
Puppeteering 2.5D Models

João Coutinho

Universidade Federal do ABC, Brazil

joao.coutinho@ufabc.edu.br

Bruno A. D. Marques

Departamento de Computação

Universidade Federal Fluminense, Brazil

brunodortamarques@gmail.com

João Paulo Gois

Universidade Federal do ABC, Brazil

joao.gois@ufabc.edu.br

Input Models 2.5D Models 2.5D Bone Structure

Puppeteering 2.5D Models

Fig. 1. Puppeteering 2.5D Models: [top row] input models required by the 2.5D Modeling techniques (left); new views generated by the 2.5D
Modeling techniques (center); definition of our bone structure for driving the computation of new poses (right); [bottom row] poses generated
with our puppeteering technique.

Abstract—A laborious task for animators is the redrawing of
2D models for each new required view or pose. As a consequence,
several applications have been proposed to make this task easier.
A successful approach is the Cartoon 2.5D Models. Its goal is
the automatic computation of new views – by the simulation of
3D global rotation – from user-provided 2D models. However,
previous work of 2.5D Models does not have support to calculate
new poses efficiently, i.e., the user redraws the input views again
in the new pose. We present a novel approach that allows the
user to produce both new views and new poses easily for the
2.5D Models, thus puppeteering the 2.5D Models. It makes use of
a hierarchical bone structure that explores the methodology of
the 2.5D Models, ensuring coherence between the bone structure

and the model. The usability of the present approach is intuitive
for users acquainted with previous 2.5D Modeling tools.

Keywords-cartoon modeling; computer animation; vector-art
drawing; geometric transformations.

I. INTRODUCTION

The availability of applications for 2D and 3D modeling is

no longer limited to the big companies of cinema and games.

Indie artists – among the new beneficiaries of those tools –

have revealed their talents by utilizing PCs, tablets, and web-

based applications [1] to create 2D and 3D content.

2016 29th SIBGRAPI Conference on Graphics, Patterns and Images

2377-5416/16 $31.00 © 2016 IEEE

DOI 10.1109/SIBGRAPI.2016.9

1

2016 29th SIBGRAPI Conference on Graphics, Patterns and Images

2377-5416/16 $31.00 © 2016 IEEE

DOI 10.1109/SIBGRAPI.2016.9

1

Compared to 3D modeling, the 2D drawing provides a

considerable artistic freedom for generating stylized cartoons.

However, one significant difference between the creation of

2D and 3D models depends on the fact that all the views

of a 3D model can be easily achieved by just rotating the

virtual camera of the application. On the other hand, in the 2D

drawing, for each point-of-view, the artist must redraw, at least

partially, the model, leading to a laborious work. Although

artists depend mainly on their artistic intuition to draw the

additional point-of-views required, it is not uncommon the

employment of automatic drawing tools to ease the task.

In this sense, the Cartoon 2.5D Modeling aims to simulate

3D rotations from a set of different views of 2D vector-art

drawings of a cartoon [2]. In this technique, the user inputs

a set of views of a 2D model – for instance, top, side, and

front – to automatically compute new views through a 2D

interpolation and an automatic depth estimate for the strokes

of the model.

However, despite the support of 2.5D Models for the

generation of new views of the model, the definition of a

new pose, in general, requires substantial redrawing of the

input models. In Fig. 1 we exemplify this issue and show

how we address it. The top-left section presents the three

input drawings used. The top-center section shows new views

automatically produced by a 2.5D Modeling technique [3].

The top-right section illustrates the proposed bone structure

for defining new poses. Finally, the bottom row shows both

new views and poses generated with the proposed technique.

When the artist designs complex models with several artic-

ulations, a user-friendly interface to alleviate the computations

of the new poses becomes necessary. The present work tackles

this issue by reducing the number of the required new drawings

for the 2.5D Models. We start from the axiom that some

strokes of the drawing in a particular view are the same

strokes in another view, in which they only differ from their

global positions. For instance, in Fig. 2-(top row), the Bunny

is (globally) rotated with open arms. In Fig. 2-(bottom row)

the Bunny, in the front view, points its left arm forward.

Notice that the drawings of the left arm in (b) and (d) are the

same. Therefore, assuming that new poses of the models are

built upon local rotations, our goal is to determine adequately

such rotations in the 2.5D methodology. In other words,

assuming the possible strokes established in other views, we

efficiently propose a 2.5D approach that reuses these drawings

for defining new poses, hence diminishing the user’s labor.

Contribution: In the present work, we propose a novel

approach for the generation of new poses for the 2.5D Models

[2]. Through the manipulation of a hierarchical bone system
that exploits the 2.5D methodology, users can determine new

poses, within an interactive interface, hence reducing their

efforts.

II. RELATED WORK

Methods for improving the visual aspects of 2D drawing

have received considerable attention. In particular, methods for

texturing, lighting, and shading [4], [5], [6], [7], [8] brought

(a) (b) (c)

(d) (e) (f)

Fig. 2. Reducing the number of new strokes: on the top (a–c), a Bunny with
open arms; on the bottom (d-f) its left arm points forward. Observe that the
left arm of the Bunny on the side view on (b) is the same drawing of the left
arm on the front view on (d). The only difference between both draws is the
position of the arm.

well-studied effects in the 3D context to the 2D drawings.

Concerning the animations of 2D drawings, the problems of

inbetweening, generation of new poses, and physically-based

simulations have also been broadly explored [9], [10], [11],

[12], [13].

One important set of studies related to 2D applications relies

on the generation of new views of a 2D drawing. Yeh and

colleagues [12] approached the 3D simulation effects for 2D

drawings. This work focused on performing twist, roll, and

fold of the drawings based on optimization strategies. For most

of the cases, the results are convincing. One of the limitations

is the manipulation of concave drawings or drawings with

large protrusions.

The Cartoon 2.5D Modeling, proposed by Rivers et al.,
simulates 3D rotations and performs animations from a set

of different views of a 2D cartoon [2]. This technique has

received attention and extensions [14], [3]. In particular, Gois

et al. extended the 2.5D Models to support interactive 3D

visual effects. In this work, the authors incorporated several

22

interactive 3D effects in the context of 2.5D Model, e.g.,
lighting, texturing and fur simulation [3]. Yet again those

2.5D Models [2], [3] present the same issue of adequately

simulating rotation with drawings with concavity and large

protrusions.

In the context of 2D drawing, the literature is full of

approaches as well as numerous successful softwares, for the

animation, edition, creation of new poses and deformation of

drawings and pictures [15], [9], [10], [16], [17]. In particular,

approaches that use hierarchical structures – or skeletons –

have also been explored for articulating 2D drawings and pho-

tos. Those structures become one of the most used approaches

for 3D animation [1]. In addition, they are present in popular

3D modeling tools [18]. Hierarchical structures have also been

explored in 2D for shading and lighting of drawings [19], [20].

In the present work, we introduce a hierarchical approach for

the creation of new poses for 2.5D Models.

III. PUPPETEERING 2.5D MODELS

Previous 2.5D Modeling techniques simulate 3D rotations

from an input set of 2D drawings. Some of these input draw-

ings are provided by the user while others are automatically

generated by reflections and rotations of these user-provided

inputs (Fig. 3). Each drawing links to a 2D point in a plane

parametrized by the pitch-yaw angles [2], [3]. The set of

these points is then triangulated (Delaunay) and the simulation

of the 3D rotation is calculated by two ingredients: the

Barycentric interpolation among the vertices of the triangles

and an automatic computation of the depth order of the strokes
that compose the model. It assumes that each stroke is present

in each drawing of each input. It is also worth to note that

strokes are composed of 2D polygonal curves. After this setup,

the user obtains new views of the model by drag-and-drop

operations either on the viewport of the screen application or

on the pitch-yaw pane (Fig. 6).

Thus, we build upon the 2.5D Method a three-stage ap-

proach for computing new poses:

• Definition of the bones: in this stage the user provides the

bone structures of the strokes that will be locally rotated;

• Computation of the local rotation of the strokes: this stage

finds the pitch, yaw – and now – roll of the strokes,

taking into account the hierarchy of the model and the

current global view of the 2.5D Model. Computationally,

this stage employs the obtained pitch and yaw to deter-

mine the correct shape of the strokes by the Barycentric

interpolation and the roll to provide its 2D orientation;

• Displacement of the positions of the strokes: this stage

is responsible for ensuring that the strokes are properly

placed in the 2.5D Model while the local rotations are

performed.

A. Definition of the bones

Our method must be as general as possible to allow the user

to define new poses independently of the current view of the

model. One can argue that, at least in some predetermined

views, for instance, the front view, it could be relatively

straightforward to compute new poses. However, artists ana-

lyze and edit their drawings using multiple views. Accordingly,

we need to define a natural approach for calculating the new

poses of the 2.5D Model independently of its current view. To

this end, we propose a bone system that is similar to the tools

for 3D modeling and animation, where the user defines joint
points at the articulations of the model. Thus, in our approach,

for each stroke, we define a bone with two joint points: the

initial joint, which is responsible for being the reference of

the rotations of the stroke and the final joint, which indicates

the end of the stroke. Specifically, we consider the initial joint

as the origin for the rotation of the final joint, i.e. the 2.5D

rotations of the final joint orbits the initial joint.

However, our method differs, in several aspects, from the

3D skeletons techniques. The first is that our bone system is

based on the 2.5D methodology. Computationally, we define

our joint points as small circles that are considered as 2.5D

strokes. This allows to exploit the 2.5D properties, e.g. the

automatic definition of the bones in the other views computed

by the 2.5D Models [3], to estimate the depth order of the

strokes. In other words, considering the joint points as 2.5D

strokes ensures the coherence of the rotations between the

2.5D Models and the proposed bone system.

Also, the use of strokes as the joint points of the bones en-

sures two important properties: the first implies that migrating

to 3D space to define the bones is not necessary, what – up

to our understanding – could be very hard to 2.5D Models.

The second, based on the computational analysis of Gois et al.
[3], the use of strokes for the joint points filled with simpler

shadings, e.g. Flat or Phong shadings, does not significantly

affect the time consuming of the application.

In Fig. 4 we detail the steps that the user performs to create

a new pose. In (a), the initial model is represented with open

arms. In (b) the user selects the first stroke where the bone

will be defined. In (c) the user defines both the initial and final

joint points (red circles) while the bone root (blue circle) in

the center of the model (origin) is automatically provided. In

(d) the user selects a second stroke and in (e) its initial and

final joint points are shown. Observe that the final joint of the

first stroke is the initial joint of the second stroke. In (f) the

user rotates the strokes, defining thus a new pose. Finally, in

(g-i) new views of the model are presented, considering the

new user-defined pose.

B. Computation of the local rotation of the strokes

We must ensure that the local rotations of the strokes are

appropriately combined as well as combined with the global

rotation of the model. We present in this section the set of 3D

rotations that provides the coherence with the 2.5D Modeling.

Gois et al. also used 3D rotations in their 2.5D Models

[3]. In this work, the authors incorporated interactive shading

effects into the 2.5D Models. They explored the graphics

pipeline to infer relief and to simulate 3D rotations of the

shading effects in real-time. The presented effects were widely

variable, e.g. Gooch and cel shadings, environment mapping,

fur simulation, hatching and texture animations. To this end,

33

r do
desenho

peração

pitch

yaw

front
side

top

qu
ad
ro
s-c
ha

Fig. 3. Setup of the 2.5D Model: each input drawing is either associated with an user-defined drawing (at the yellow vertices) or automatically generated
from the user inputs (at the blue vertices) of the (triangulated) pitch-yaw parameter plane.

the authors incorporated into the method of the 2.5D Model

a 3D reference geometry for each stroke of the model where

shading effects were computed and appropriately transferred to

the 2.5D Model in real-time. The method assigns the pitch-yaw

coordinates to the 3D rotations of the reference geometry. This

transfer guarantees the simulation of the 3D virtual trackball

with shaded 2.5D Models.

Here, we follow a reverse path: given a 3D rotation of

the stroke, we need to find its current pitch, yaw and roll

parameters in order to obtain its shape and orientation. In the

following, we show how to build this 3D rotation to adequately

obtain these parameters.

We firstly need to compute the 3D local rotation of a stroke:

R� = Rx(pitch) ∗Ry(yaw) ∗Rz(roll), (1)

where R� denotes the 3D local rotation of the stroke and

Rx, Ry and Rz are the rotations with respect the euclidean

axis by the pitch, yaw and roll values interactively provided

by the user.

Next, we need to combine the local rotation of the stroke

with the rotations of the stroke hierarchically above it as well

as the global rotation:

Rf = R� ∗Rp ∗Rg, (2)

where Rf is the final rotation of the stroke, Rp is the rotation

of its parent, and Rg is the global rotation.

Finally, we compute from Rf the Euler angles (pitch, yaw,

roll) of the stroke. Afterwards, the pitch and yaw values deter-

mine the shape of the stroke by the Barycentric interpolation

while the roll provides its 2D orientation.

Previous computation ensures that the stroke will have the

desirable shape, but does not ensure that the stroke will be

adequately placed on the model. Now, we need to perform the

last stage of our approach: the heuristics that guarantees the

strokes of being properly placed on the model.

C. Displacement of the positions of the strokes

Previous 2.5D Models only support global rotations. How-

ever, we need to ensure that the strokes can be plausibly

rotated locally. Specifically, we propose a heuristic (depicted

in Fig. 5) to establish that local rotations are performed with

respect the initial joint point. Fig. 5-(a) shows the initial model

while (b) presents the bone definition of the stroke that will be

locally rotated. The initial and final joint points of the bone are

depicted in white and red colors, respectively. At this moment,

the bounding box of the stroke is also illustrated. The user

finds the desirable shape and orientation of the stroke by tuning

the pitch, yaw and roll parameters (described in Sec. III-B) in

the interface application. However, the current position of the

new shape of the stroke, which was computed by the 2.5D

global rotation, probably will be not in the desirable position

(c). We thus need to move the stroke adequately to its initial

joint point. The issue, at this moment, is to determine which

part of the stroke must be the closest to the initial joint point.

Notice that the bone, which is rotated considering its initial

joint point, provides a hint to a coherent displacement of the

stroke. To adequately displace the stroke, we take into account

the hypothesis that the center of the bounding box of the stroke

44

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Bone Interface: (a) the initial model; (b) the user selects the
first stroke; (c) the user defines both the initial and final joint points (red
circles). The blue circle (bone root) is the center of the model (origin) and is
automatically provided; (d) the user selects a second stroke and (e) the initial
and final joint points are computed to it; (f) the user rotates the strokes,
defining thus a new pose; (g-i) new views of the model considering the new
pose.

is, in general, close to the center of the stroke. It follows that

the translation of the stroke is performed in two steps: firstly,

we move the center of the bounding box to the initial joint

point (d); secondly, we translate the bounding box by half of

its diagonal along the line segment of the bone (e). The use of

this heuristics has ensured that the local rotation of the strokes

remains coherent to the initial joint point (Fig. 5-(f)).

IV. RESULTS

We developed our application with the C++ language, the Qt

framework (version 5.6) and the shading language GLSL (ver-

sion 4.2). All the results, even with shaded strokes on, achieved

around 25 frames per second in a PC equipped an nVidia GTX

750Ti graphics card. We computed the geometrical rotations as

(a) (b) (c)

(d) (e) (f)

Fig. 5. Displacement of the positions of strokes: step-by-step of our heuristic
that ensures the locally rotated strokes are suitably placed in the 2.5D Models.
(a) initial model; (b) definition of the bone and bounding box of the stroke;
(c) real position of the stroke when the 2.5D rotation is computed; (d)-
(e) heuristics to displace coherently the stroke: first move the center of the
bounding box to the initial joint point of the bone (white circle) and second
move half of the diagonal of the bounding box along the bone; (f) the stroke
will be plausibly placed according to its initial joint point.

well as the conversion to Euler angles, presented in Sec. III-B,

using the Quaternions class provided by Qt. Singularities were

expected when converting from quaternions to Euler angles at

angles near the 90 degrees [21], [22]. We simply tackled this

issue by considering a small perturbation close to these cases.

Figure 6 presents the interface of the application. Observe

that on the top-right there are two view cubes that track

the rotations: the left cube tracks the local rotation of the

currently selected stroke, whereas the right cube tracks the

global rotation. On the bottom, it can be observed the selector

for the local and the global rotations as well as the pane for

the pitch-yaw and the slider for the (local) roll rotation.

Fig. 7 presents the analysis of the method when requiring a

complex bone structure. In (a-c) it is shown the input model

and in (d) a rotated view at the original pose. In (e) the bones

are defined. Observe that it incorporates not only the limbs

but also the head of the Ant. In (f) the model was rotated, and

55

Fig. 6. The interface of the application: the global rotation is obtained by
the drag-and-drop at the viewport widget (white window) or by the drag-and-
drop at the pitch-yaw pane, the rectangle at the bottom. Local rotations are
computed through the navigation at the pitch-yaw pane and by the roll slider
(right side of the pitch-yaw pane).

its bones were manipulated. Other views of the model with its

bones are presented in (g-h). From (i) to (p) several poses are

performed.

In addition, our bone structure can be used to rotate hierar-

chically drawn strokes. For instance, the head of the models,

in Fig. 7 and Fig. 8 have inside them other strokes, e.g. eyes

and mouths. So with our technique, rotating a bone defined

in the head of the model will also rotate coherently all of its

child strokes (eyes, mouth, etc).

In Fig. 9, we show global rotations of the Bunny in both

poses presented in Fig. 2: in (a-b) we introduce the model with

open arms, whereas in (c-d) it points its left arm forward. In

Fig. 10, we briefly illustrate the displacement of a stroke. In

(a) we present the initial model with a bone on the (green)

arm. In (b) we give the global rotation of the model while in

(c) we rotate only the arm. Notice that the stroke of the arm

in Fig. 10-(b-c) not only is the same but it is also in the same

place on the plane. In (d) we show the final position of the

stroke, after applying our heuristic of displacement of strokes.

A. Limitations and Future Work

Despite the recent improvements on 2.5D Models, there

are important issues to be studied. The first is related to the

bone structure. It is built upon the 2.5D methodology, i.e., the

joint points are manipulated as 2.5D strokes. Consequently,

modifications may be required at the bone for each user input.

Obviously even with the local modifications of the bone for

each user-provided pose, the great benefit of defining new

poses still remains. However, this fact does not prohibit the

exploration, in a future work, for an approach that better fits

the bones in all input views automatically.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 7. Model with a bone structure with multiple joints: (a-c) user inputs; (d)
rotated model at the initial pose; (e-h) definition of the bones and computation
of new poses and views; (i-p) several views of different poses.

The current bone system is built supposing the space

parameterization suggested by Gois et al. [3], in which yaw

is continuously computed from -180 to 180 degrees. On the

other hand, in the work by Rivers and colleagues [2], when

yaw is zero, the strokes are reflected. In a future work we aim

to consider this property of the Rivers approach into the bone

system.

It is also important to provide some comments about the

heuristics for displacement of the stroke. One could argue that

more sophisticated methods could be employed, for instance,

methods that explore an optimization technique or principal

66

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 8. Robot Dog Model: (a-c) views at the original pose; (d) a view with
the bone system; (e-l) new views and poses of the model.

(a) (b) (c) (d)

Fig. 9. Global rotation of the Bunny in two distinct poses: (a-b) rotations of
the Bunny represented with open arms; (c-d) global rotations of the Bunny
with its left arm pointing forward.

component analysis. However, up to this moment, the achieved

results are satisfactory and the computational time is not

compromised.

There is a limitation related to the user interface. Currently,

we control the local rotations of the bones by a pane (pitch

and yaw) and a slider (roll). However, for arbitrary views and

poses, this kind of interface can become nonintuitive. In a

future work, we shall to develop an approach to edit the bones

directly in the view pane.

Another important issue is related to the interpolation of

sharp and highly concave strokes. This issue can be ad-

dressed for some shapes, as suggested by Rivers [2], by

(a) (b) (c) (d)

Fig. 10. Displacement of the strokes: (a) initial stroke with the bone in the
arm; (b) example of global rotation of the model; (c) local rotation of the
arm. Notice that the shape and position of the green arm in (b) and (c) are
the same; (d) the final position of the stroke after applying our heuristic of
displacement of strokes.

the decomposition of the stroke into mostly convex strokes

followed by a Boolean union. Thus, following such suggestion,

we implemented a technique to guide the decomposition of

the stroke. Our approach is based on the Hertel-Mehlhorn

algorithm [23] for triangulation of polygons. From the vertices

of the triangulation of the polygon, our method computes a

set of curves (ellipses in our tests) overlapping the original

stroke. After this step, the user deforms the curves to better fit

the original stroke. In Fig. 11-(a-c), the user adjusts the curves

at the side, front, and top views. In (d) we present a rotated

view of the decomposed Santa Claus’ hat. In Fig. 11-(e-h) we

illustrate the result of the Boolean union of the strokes.

However, this technique presents a limitation related to the

computation of the depth order for complex shapes. At this

moment, the depth order is a single value to the stroke. In

complex geometries, the current versions of the 2.5D Models

experienced difficulties to compute the order of the strokes

adequately.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. The method of decomposition of highly concave strokes employed
to the Santa Claus’ hat: (a-c) decomposed user input (side, front and top
views); (d) a rotated view of the model. (e-h) the Boolean operation of the
curves that decomposed the model.

A further study related to the problem of complex shapes is

the investigation of new methods of interpolation. Currently,

we have been using the Barycentric interpolation, motivated

by its simplicity and computational efficiency. However, it has

77

been shown, not only in this work but also in the previous

ones [3], [2] that such interpolation is inefficient to handle

complex shapes. Thus, it is apparent that we must investigate

new methods of interpolation for 2.5D Models. One possibility

is the multi-scale geometry interpolation [24].

V. CONCLUSION

The 2.5D Models [3], [2] simulate 3D global rotation by a

2D interpolation among provided views of the 2D model and

an automatic depth-order computation of the strokes of the

model.

In this work, we provided a step forward in making 2.5D

Models a more attractive approach for the modeling and

animation of 2D drawings by incorporating a user-friendly and

interactive technique to determine new poses: puppeteering.

The usability of the present approach is intuitive for users

familiar with previous 2.5D Modeling tools.

The goal of our technique is to shorten the artists’ redrawing

work. Specifically, instead of redrawing the strokes for the new

required poses, our method allows the users to locally rotate

the strokes, i.e. perform a local simulation of the 3D rotation

of the strokes. The local rotation of the strokes is done by

our method in three steps: the formation of a bone structure,

the computation of the pitch, yaw and roll parameters of the

strokes and the displacement of the position of the strokes.

The first is related to the definition of a hierarchical structure

– in a similar way to 3D animation tools – while the other two

are linked to the computation of the coherent rotation of the

strokes within the 2.5D methodology. All in all, the presented

results affirm the flexibility and the potential of puppeteering

2.5D Models.

ACKNOWLEDGMENT

The authors thank to São Paulo Research Foundation

– FAPESP (proc. 2014/11067-1), the National Council

of Technological and Scientific Development (CNPq), and

Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Supe-

rior (CAPES) for the financial support of this work.

REFERENCES

[1] A. Jacobson, “Breathing life into shapes,” IEEE Computer Graphics and
Applications, vol. 35, no. 5, pp. 92–100, Sept 2015.

[2] A. Rivers, T. Igarashi, and F. Durand, “2.5d cartoon models,” ACM
Trans. Graph., vol. 29, no. 4, pp. 59:1–59:7, Jul. 2010. [Online].
Available: http://doi.acm.org/10.1145/1778765.1778796

[3] J. P. Gois, B. A. D. Marques, and H. C. Batagelo, “Interactive
shading of 2.5d models,” in Proceedings of the 41st Graphics Interface
Conference, ser. GI ’15. Toronto, Ont., Canada, Canada: Canadian
Information Processing Society, 2015, pp. 89–96. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2788890.2788907

[4] R. Prévost, W. Jarosz, and O. Sorkine-Hornung, “A vectorial framework
for ray traced diffusion curves,” Computer Graphics Forum, vol. 34,
no. 1, pp. 253–264, 2015.

[5] D. Sýkora, L. Kavan, M. Čadı́k, O. Jamriška, A. Jacobson, B. Whited,
M. Simmons, and O. Sorkine-Hornung, “Ink-and-ray: Bas-relief meshes
for adding global illumination effects to hand-drawn characters,” ACM
Transaction on Graphics, vol. 33, no. 2, p. 16, 2014.

[6] J. Lopez-Moreno, S. Popov, A. Bousseau, M. Agrawala, and
G. Drettakis, “Depicting stylized materials with vector shade trees,”
ACM Trans. Graph., vol. 32, no. 4, pp. 118:1–118:10, Jul. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2461912.2461972

[7] M. Finch, J. Snyder, and H. Hoppe, “Freeform vector graphics
with controlled thin-plate splines,” ACM Trans. Graph., vol. 30,
no. 6, pp. 166:1–166:10, Dec. 2011. [Online]. Available: http:
//doi.acm.org/10.1145/2070781.2024200

[8] D. Sýkora, M. Ben-Chen, M. Čadı́k, B. Whited, and M. Simmons,
“Textoons: Practical texture mapping for hand-drawn cartoon anima-
tions,” in Proceedings of International Symposium on Non-photorealistic
Animation and Rendering, 2011, pp. 75–83.

[9] A. Jacobson, I. Baran, J. Popović, and O. Sorkine, “Bounded biharmonic
weights for real-time deformation,” ACM Transactions on Graphics
(proceedings of ACM SIGGRAPH), vol. 30, no. 4, pp. 78:1–78:8, 2011.

[10] A. Jacobson, Z. Deng, L. Kavan, and J. P. Lewis, “Skinning:
Real-time shape deformation,” in ACM SIGGRAPH 2014 Courses, ser.
SIGGRAPH ’14. New York, NY, USA: ACM, 2014, pp. 24:1–24:1.
[Online]. Available: http://doi.acm.org/10.1145/2614028.2615427

[11] B. Jones, J. Popovic, J. McCann, W. Li, and A. Bargteil, “Dynamic
sprites,” in Proceedings of Motion on Games, ser. MIG ’13. New
York, NY, USA: ACM, 2013, pp. 17:39–17:46. [Online]. Available:
http://doi.acm.org/10.1145/2522628.2522631

[12] C.-K. Yeh, P. Song, P.-Y. Lin, C.-W. Fu, C.-H. Lin, and T.-Y. Lee,
“Double-sided 2.5d graphics,” IEEE Transactions on Visualization and
Computer Graphics, vol. 19, no. 2, pp. 225–235, 2013.

[13] F. Di Fiore, P. Schaeken, K. Elens, and F. Van Reeth, “Automatic in-
betweening in computer assisted animation by exploiting 2.5d modelling
techniques,” in Proceedings of the Fourteenth Conference on Computer
Animation. IEEE, 2001, pp. 192–200.

[14] F. An, X. Cai, and A. Sowmya, “Perceptual evaluation of automatic 2.5d
cartoon modelling,” in Proceedings of the 12th Pacific Rim conference
on Knowledge Management and Acquisition for Intelligent Systems,
ser. PKAW’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 28–42.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-32541-0 3

[15] “Spine: 2d animations for games,” http://esotericsoftware.com/, ac-
cessed: 2015-11-24.

[16] R. H. Kazi, F. Chevalier, T. Grossman, S. Zhao, and G. Fitzmaurice,
“Draco: Bringing life to illustrations with kinetic textures,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’14. New York, NY, USA: ACM, 2014, pp. 351–360.
[Online]. Available: http://doi.acm.org/10.1145/2556288.2556987

[17] A. Jacobson, T. Weinkauf, and O. Sorkine, “Smooth shape-aware func-
tions with controlled extrema,” Computer Graphics Forum (proceedings
of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Pro-
cessing), vol. 31, no. 5, pp. 1577–1586, 2012.

[18] C. Totten, Game Character Creation with Blender and Unity, ser.
EBL-Schweitzer. John Wiley & Sons, 2012. [Online]. Available:
https://books.google.com.br/books?id=DICrcWznTmwC

[19] R. Nascimento, F. Queiroz, A. Rocha, T. I. Ren, V. Mello, and
A. Peixoto, “Colorization and illumination of 2d animations based on a
region-tree representation,” in 24th SIBGRAPI Conference on Graphics,
Patterns and Images. Los Alamitos, CA, USA: IEEE Computer Society,
2011, pp. 9–16.

[20] D. Sýkora, D. Sedlacek, S. Jinchao, J. Dingliana, and S. Collins,
“Adding depth to cartoons using sparse depth (in)equalities,” Computer
Graphics Forum, vol. 29, no. 2, pp. 615–623, 2010. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-8659.2009.01631.x

[21] J. Lee, “Representing Rotations and Orientations in Geometric Com-
puting,” IEEE Computer Graphics and Applications, vol. 28, no. 2, pp.
75–83, March 2008.

[22] J. Vince, Rotation Transforms for Computer Graphics. Springer, 2011.
[23] S. Hertel and K. Mehlhorn, “Fast triangulation of the plane

with respect to simple polygons,” International Conference on
Foundations of Computation Theory – Information and Control,
vol. 64, no. 1, pp. 52 – 76, 1985. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0019995885800449

[24] T. Winkler, J. Drieseberg, M. Alexa, and K. Hormann, “Multi-scale
geometry interpolation,” Computer Graphics Forum, vol. 29, no. 2,
pp. 309–318, 2010. [Online]. Available: http://dx.doi.org/10.1111/j.
1467-8659.2009.01600.x

88

