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A B S T R A C T

The representation of consistent mixed reality (XR) environments requires adequate
real and virtual illumination composition in real-time. Estimating the lighting of a
real scenario is still a challenge. Due to the ill-posed nature of the problem, classi-
cal inverse-rendering techniques tackle the problem for simple lighting setups. How-
ever, those assumptions do not satisfy the current state-of-art in computer graphics and
XR applications. While many recent works solve the problem using machine learning
techniques to estimate the environment light and scene’s materials, most of them are
limited to geometry or previous knowledge. This paper presents a CNN-based model
to estimate complex lighting for mixed reality environments with no previous informa-
tion about the scene. We model the environment illumination using a set of spherical
harmonics (SH) environment lighting, capable of efficiently represent area lighting. We
propose a new CNN architecture that inputs an RGB image and recognizes, in real-time,
the environment lighting. Unlike previous CNN-based lighting estimation methods, we
propose using a highly optimized deep neural network architecture, with a reduced
number of parameters, that can learn high complex lighting scenarios from real-world
high-dynamic-range (HDR) environment images. We show in the experiments that the
CNN architecture can predict the environment lighting with an average mean squared
error (MSE) of 7.85 × 10−4 when comparing SH lighting coefficients. We validate our
model in a variety of mixed reality scenarios. Furthermore, we present qualitative re-
sults comparing relights of real-world scenes.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Consistent environment lighting is a crucial component in
real-time simulations based on mixed reality applications. The
divergence between real and virtual objects lighting is a signifi-
cant factor for immersion loss and a perceptual reduced graph-
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ical quality [1]. Plausible mixed reality lighting can be ac-
complished by acquiring the lighting of the real environment
and adapting the virtual environment with matching lighting
properties [2]. Most lighting recovery approaches have focused
on intrusive tools to measure the environment lighting, requir-
ing great user’s effort and scenario preparation. Consequently,
these solutions have limited applicability in XR systems based
on real-time visualization. An alternative to real-data measure-
ments is to estimate the lighting indirectly through the available
environment information. Despite the recent advances in com-
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Figure 1. Deep neural network spherical harmonics lighting estimation on mixed reality scenes. Stock photos with virtual objects lit by our lighting
estimation model.

puter vision and inverse rendering [3], estimating the environ-
ment lighting without specialized equipment and under strict
time constraints remains a challenging problem [4]. This work
aims to recognize the user’s environment lighting through a
model that learns the scene’s inherent characteristics regarding
lighting and illumination, therefore estimating an environment
lighting capable of generating plausible XR environments. A
challenging aspect of the problem resides in the fact that light-
ing estimation is an ill-posed problem, yielding no solution or
multiple solutions for a given input [5].

We use machine learning techniques and a specialized dataset
to overcome the complex aspects of lighting estimation, learn-
ing from promptly available information in mixed reality ap-
plications: an RGB image of the environment taken from an
egocentric point-of-view.

We leverage state-of-the-art lighting estimation methods by
predicting the real-world environment lighting using a convo-
lutional neural network that works in the wild without assump-
tions about the scene’s geometry or special measurement de-
vices. Our method does work in a variety of environments, in-
cluding indoor and outdoor scenes, and does not require any
user’s intervention in the scene. Our custom-designed CNN ar-
chitecture learns a latent space representation of the environ-
ment lighting, allowing an efficient representation of the scene
illumination. This representation is used to estimate the envi-
ronment lighting encoded in a spherical harmonics basis. We
also present a framework to create a mixed-reality-view, an im-
age that mimics the user’s egocentric view in an XR environ-
ment.

Figure 1 illustrates examples where virtual objects are illu-
minated by our method. The composition of real and virtual
objects can be utilized as a plausible and realistic XR environ-
ment.

The main contributions of our work are:

• An automatic end-to-end method to estimate the environ-
ment lighting in an XR application.

• A novel, custom-designed CNN architecture that learns a
latent-space representation of environment lighting

• A methodology to generate egocentric mixed-reality-
views from HDR panoramas. i. e., mixed-reality-view.

• A methodology for lighting estimation that works in real-
time and does not make restrictive assumptions about the
mixed-reality scene neither the application’s domain.

The lighting estimation model developed in this work can
be employed in most XR applications increasing the user’s im-
mersion by providing lighting consistency. The applicability
of our model is not restricted to mixed reality; other applica-
tions also benefit from it, including real-time editing of video
and photo with consistent illumination, real-time relighting of
pictures, and inverse lighting design [6].

2. Related Work

Many related works try to solve the lighting estimation task
based on different assumptions or strategies. In the follow-
ing subsections, we group them into categories comparing with
our proposed solution. In addition, we highlight the limitations
and restrictions of the prior works concerning XR applications
when appropriate.

2.1. Device-based light probe

Device-based techniques comprehend methods that make use
of a special device that acts as a light probe or directly measures
the lighting condition of the scene. In the work of Debevec [7],
a mirror ball acts as the capturing device, providing the radi-
ance of the environment. Several pictures of the device with
different exposure levels are necessary to generate an environ-
ment map. Another approach for consistent lighting in XR is
acquiring the environment lighting through the image of a wide-
angle camera, such as a fish-eye lens camera [8, 9, 10]. Some
other methods focus on designing light probes that can accu-
rately estimate the environment lighting [11, 12]. Another ap-
proach is to estimate the lighting from single exposure images
based on physical objects with different reflectance, such as in
DeepLight[13], that utilizes a capture apparatus that introduce
three spheres with different reflectance into the scene.

Compared to our work, these methods result in accurate en-
vironment lighting. However, the usage of such devices to de-
termine the lighting is impractical in many real applications,
such as XR environments. Furthermore, those techniques do
not work in unprepared environments, restricting their practi-
cal usage. Different from the previous works, we choose our
approach to be practical and effortless for the end-user.

2.2. Scene and object geometries

Some lighting estimation approaches rely on a known geom-
etry of the real scene, or physical object presents in the scene.
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The assumption of known geometry is a convenient prior for
inverse rendering techniques.

Mandl et al. [14] explore known physical objects as light
probes to estimate the environment lighting. An object with
known geometry is placed in the scene, and a neural network
estimates the lighting setting. Weber et al. [15] propose a la-
tent space representation of the environment lighting that can
be used to estimate the environment lighting of an object with
known geometry and reflectance.

Some methods do not assume a previously known scene (or
object) geometry but utilize a rough estimation of the depth or
surface normals in real-time [16, 17, 18, 19, 20, 21]. These
methods utilize depth sensors (RGB-D cameras) to capture
scene information. Although there have been advancements of
depth sensor technologies, most XR hardware does not provide
such capabilities; moreover, those techniques usually require
the scan of the complete scene before a reasonable lighting esti-
mation becomes possible. Furthermore, depending on the cam-
era device, environments with high infra-red light incidence,
such as the sunlight, may compromise those solutions.

2.3. Face, eyes and hands light probes
Lighting estimation is a task that arises from multiple do-

mains. In particular, several works concentrate on lighting es-
timation for human face images [22]. Relighting of portraits
is a common problem that requires the lighting estimation of a
scene. Usually, the 3D morphable model of faces [23] is uti-
lized to perform an analysis-by-synthesis capable of estimating
the environment lighting [24, 25, 26, 27]. Recently, Sun et al.
[28] presented an alternative methodology for portrait relight-
ing that employs a convolutional neural network to estimates
the environment lighting. Those methods rely on images of hu-
man faces in portrait poses to estimate the environment lighting.

The usage of human eyes as light probes is another approach
that has been investigated [29, 30]. The human eye has a known
geometry that is well approximated by a sphere. Furthermore,
the high specular reflectance makes the eye a suitable probe for
lighting estimation [31]. The downside of this approach is the
reduced pixel resolution and the limiting factor that a human
face should be visible in the image. Those limiting assump-
tions, especially the latter, are hard to circumvent in a mixed-
reality egocentric view perspective.

Finally, the availability of human hands is an assumption
made by Marques et al. [32, 33], where human hands act as
implicit light probes for estimating the environment lighting for
XR applications. They estimate the lighting through a CNN
model that uses images of the user’s real hands as input. Al-
though the hands are the main form of interaction in egocentric
XR applications, cameras with low field-of-view can limit the
applicability of those methods in real applications.

The methods mentioned in this subsection are specific for
certain domains where faces, hands, or eyes are visible. These
limitations severely restrict the usage of previous methods in
general XR applications.

2.3.1. Outdoor environment
Lighting estimation for the outdoor environment is another

specific domain that several authors explored [34, 35, 36, 37].

They tackle the problem by fitting specific parametric outdoor
lighting models [38, 39] that take into account sun and skylight
properties. However, those methods are out of the scope of
our work, considering that our goal is to estimate lighting for
arbitrary XR environments (including indoor environments).

2.4. Surface reflectance and lighting

Since the environment lighting has a significant influence on
the surface reflectance, recovering surface reflectance correlates
to lighting estimation tasks. Examples of such correlations
are surface reflectance methods that use planned lighting set-
tings under a controlled environment to infer material proper-
ties [40, 41, 42, 43, 44]. Another typical context for surface re-
flectance estimation is to estimate the surface reflectance under
unknown environment lighting; in this context, the methods es-
timate the reflectance and environment lighting simultaneously,
using either the geometry of a 3D scanned object [42, 45] or
depth sensors [46, 47]. Thus, those methods share the limita-
tions present in the geometry-based lighting estimation meth-
ods.

2.4.1. Environment lighting based on deep learning
The methods described in this subsection are the closest

prior-art that are suitable for XR environments.
Gardner et al. [48] propose a lighting estimation specific

to indoor environments; the method uses a CNN to estimate a
coarse environment mapping of the scene; the method achieves
good results for relights of indoor environments. However, it
relies on an intermediate process that makes use of a light clas-
sifier to annotate the location of light sources; this process is
a possible limiting factor for the applicability of the method
in outdoor scenes and non-conventional light sources (indirect
light sources, resulting from global illumination effects).

Song and Funkerhouser [49] estimate the lighting in a local-
ized point of an indoor scene by decomposing the problem as
the subtasks of geometry estimation, warped panorama com-
pletion, and LDR to HDR estimation. Decomposing the prob-
lem in simpler subtasks helped the learning process, producing
higher quality estimations when compared to Gardner et al. [48]
work.

Garon et al [50] estimate local lighting of the indoor scene’s
by combining local and global lighting; this is accomplished by
providing both the global image and a local patch of the image
to a two-path neural network. The training process of this net-
work requires light probes with depth maps of the scene. To
circumvent the laborious process of capturing the light probes
and depth maps on real scenes, they make use of synthetic data
to generate the required training data. One limitation of Garon
et al. lighting prediction is the low color consistency in some
cases; they credit the failure cases to their methodology of train-
ing the neural network using synthetic data leading to prediction
errors in the real test data.

Unlike Garon et al. [50] method, we train our CNN on real
environment panoramas, and we further propose a color regu-
larization that circumvents their limitations. The usage of en-
vironment panoramas also facilitates the process of generating
samples for our training dataset.
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Figure 2. Overview of the lighting estimation CNN architecture. The model’s input is an RGB image; the feature extractor extracts the latent features that
better describe the input image’s environment lighting. The architecture has an SH decoder that describes the environment lighting as a set of spherical
harmonics coefficients and an auxiliary LUV decoder that acts as a color regularizer during the training of the CNN.

3. A CNN method for environment lighting estimation
based on spherical harmonics functions

Our goal is to recognize the real-world environment lighting,
leveraging this lighting information to virtual environments, al-
lowing more convincing lighting composition for XR experi-
ences. We explore spherical harmonics functions to encode the
environment lighting into a compact and expressive representa-
tion. This strategy allows representing smooth arbitrary area
lighting, not limited to a few point light or directional light
sources [51].

Our model is based on a convolutional neural network capa-
ble of predicting the spherical harmonics environment lighting
operating over a single low-dynamic-range (LDR) image. The
CNN operates over LDR images, producing plausible environ-
ment lighting arrangements with respect to direction, color, and
intensities.

To produce realistic lighting scenarios, we use real environ-
ment panoramas captured in a great variety of places and light-
ing settings. Those panoramas are processed to mimic the im-
ages captured by the Head-Mounted-Displays (HMD) in the
runtime of XR applications. We name the processed image as
mixed-reality-view. The processing of an HDR panorama into
mixed-reality-views is described with more details in Section 4.

A projection of spherical harmonics functions can describe
the lighting settings in a given panorama [52]. This operation
produces a set of SH coefficients. Our dataset, which is com-
posed of mixed-reality-view and SH coefficients, is employed
for training our lighting estimation CNN, as described in Sec-
tion 5. We demonstrate our lighting estimation model in Section
6 by a set of quantitative and qualitative experiments. Further-
more, we show an application that relights XR environments,

and we make a comparison of our method and other state-of-
the-art approaches for real-time lighting estimation [48, 50].

3.1. Environment Lighting Estimation

The environment lighting is the outcome of a complex com-
bination of physical interactions between light sources and sur-
faces of objects in the scene. There is a variety of represen-
tations that can be used to represent the environment lighting,
ranging from simplified models (e.g. directional light models)
to more complex and physically accurate models (e.g. resulting
radiance from global illumination algorithms such as radiosity
and photon mapping [53]). In real-time applications, environ-
ment lighting is commonly represented by environment maps,
which allows image-based lighting (IBL) [54] to be imple-
mented in the rendering process. A single environment map can
use high-resolution HDR images, in the order of 8192 × 4096
pixels. However, a lower sampling rate can produce a good
quality environment lighting. A viable approximation of en-
vironment maps is the usage of spherical harmonics functions.
Any signal can be approximated by projecting it onto spherical
harmonics basis functions. In particular, low-order functions
are sufficient to approximate the environment lighting due to
the diffuse nature of the signal [52]. We choose to use this ap-
proximation to represent the environment lighting in our work.
The second-order spherical harmonics functions are capable of
representing the diffuse environment lighting in a compact for-
mat with only nine coefficients per color channel and allow
rendering techniques such as pre-computed radiance transfer
functions [55]. Furthermore, we argue that learning a low-
dimensional representation of lighting is a more manageable
task than a complex high-dimensional function.

We empirically found that using 9 SH coefficients gives a
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Figure 3. Reference irradiance map (obtained through Monte Carlo im-
portance sampling) and SH approximated irradiance maps with orders
ranging from 1 to 4. The renders use the irradiance map as the environ-
ment lighting source of the scene.

good compromise between rendering quality and representa-
tion size. Figure 3 illustrates our findings. We generate and
compare environment map representations ranging from first-
order SH (4 coefficients) to fourth-order SH (25 coefficients).

For the bunny render, the first-order SH approximation has a
mean squared error (MSE) of 0.0068 compared to the refer-
ence obtained by monte carlo importance sampling. In contrast,
the subsequent SH approximations have substantial lower MSE
(0.0002, 0.0002, 0.0001). We also rendered a scene to qual-
itatively compare the rendering quality. While the first-order
SH approximation is not sufficient to represent the environment
lighting in the scene, the subsequent approximations (orders
ranging from 2 to 4) produces a very similar rendering. Similar
performance is observed for the dragon render (middle column
of Figure 3) with MSE of 0.0084, 0.0004, 0,0004, 0,0001; and
the statue (right column) with MSE of 0.0014, 0.0002, 0,0002,
0.0001.

3.2. Lighting Estimation CNN Architecture

The architecture comprises a convolution-based feature ex-
tractor and two heads predicting the SH lighting coefficients
and a color-space transformation of the input image.

The recent advances in deep learning allow the develop-
ment of highly optimized neural networks capable of learn-
ing complex tasks with a reduced number of parameters; the
SqueezeNet [56], originally employed for image classification
and object detection, is designed to achieve a high level of accu-
racy while maintaining a low memory footprint. The resulting
outcome is a lightweight architecture with comparable accu-
racy and fewer parameters compared to equivalent bigger neu-
ral network architectures. Another significant advantage of this
network is the efficiency in the training and inference time of
the CNN model. Due to the restrictive time budget of our ap-
plication (rendering frames in less than 16 ms for a comfortable
XR experience), we choose the SqueezeNet as our main convo-
lutional feature extractor.

Since we are operating on color images, our model’s archi-
tecture operates in the RGB color channels with an SH decoder
that outputs 3 × 9 SH coefficients. An important feature of
our model is the color consistency of the lighting estimation.
The color consistency consists in predicting plausible lighting
estimation in respect to three color channels, without a color
channel dominating another one (for example, predicting higher
values for the red color while maintaining the green and blue
channels with near-zero values). It is important to note that our
method is not limited to 2nd order SH representation. Different
SH estimations can be done by simply changing the last layer
of the SH decoder of our neural network architecture to the ap-
propriate number of SH coefficients.

Based on previous experiments, we hypothesize that learn-
ing only SH coefficients would result in low color-consistency
predictions. We employ a second decoder as a color consis-
tency regularizer for our model; this decoder takes the latent-
space vector and synthesizes the input image in a different color
space (LUV). We hypothesize that the neural network better un-
derstands the relationship between the color channels and the
lighting in the scene by learning this color-space transforma-
tion concurrently to the SH coefficients. The reasoning to use
the CIELUV color space in our work is that it is a colorspace
with a perceptual lightness component. Still, we believe that
any color space with a mapping of perceptual lighting and chro-
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matic components (including CIELAB color space) would re-
sult in a similar outcome. Figure 2 illustrates an overview of
the model’s architecture, including the main feature extractor,
the SH decoder, and the LUV decoder.

The SH decoder head is composed of three consecutive fully
connected layers with rectified linear activation function and
dropout regularizer [57]. The fully connected layers have 2048,
1024, and 27 neurons in the hidden layers, respectively. The
final layer of the decoder is activated by a Softsign function
f (ȳ) =

(
ȳ
|ȳ|+1

)
. The Softsign function restricts the SH coeffi-

cients to [−1, 1] values and have a smoother asymptotic line
when compared to the hyperbolic tangent function [58].

We model our solution with a regression of the 3×9 spherical
harmonics lighting coefficients and the LUV image. The loss
function of our network is determined by the weighted sum of
the loss for each decoder head, thus:

L = αLS + (1 − α)LL, (1)

where LS is the SH decoder loss, LL is the LUV decoder loss
and α is the weight scalar.

Since we are modeling the problem with second-degree
spherical harmonics functions, we can separate them by three
bands. Let k ∈ R,G, B be the index that identifies each light-
ing channel. The band 0 with coefficient C0

k corresponds to the
ambient light term, a constant value across all the environment.
Band 1 with coefficients C1

k correspond to lighting lobes aligned
to horizontal, vertical, and depth axis. The terms of band 2,
C2

k , correspond to the remaining five lighting lobes constituting
multiple combinations of directions for each one of the chan-
nels. Each coefficient is defined independently for each chan-
nel. A possible approach is to attribute a weighted scalar to
each band in the loss function. Therefore, the loss function per
channel results in:

Li =
∑

k∈{R,G,B}

αE(C0
k ) + βE(C1

k ) + γE(C2
k ), (2)

where E(c) is the mean squared error (MSE).
This formulation for the loss function requires three weighted

scalars (α, β, γ) as training parameters of our model. Since we
do not know a priori the optimal value for those scalars, a grid
search or a learnable parameters approach is necessary. Instead
of evaluating or model predictions directly with this loss func-
tion, we choose to employ a differential-rendering approach.
The differential-renderer keeps tracking all the operations in the
rendering process and calculates the gradient of those opera-
tions in the backtracking step of the training process. This ap-
proach allows the model to evaluate the predictions and change
the model weights based on changes per pixel in the SH envi-
ronment mapping. We use the same average E(c) metric of the
estimated and ground truth environment mapping.

4. Learning from HDR panoramas

In this section, we describe the complete pipeline to pro-
cess the input HDR environment panorama into mixed-reality-
views and the corresponding environment lighting. The mixed-
reality-view (MRV) is a low-dynamic-range (LDR) color im-
age similar to a photograph taken from a camera located in the

HMD capturing an egocentric view of the user’s environment.
Spherical harmonics coefficients encode an area light model
that represents the environment lighting. Those data are used
for training our lighting estimation model.

Our goal is to generate sufficient data to model arbitrary en-
vironmental lighting settings, capturing the implicit casual rela-
tionship between the environment appearance and light sources
in the scene. We accomplish this from real-world HDR envi-
ronment panoramas present in the Laval indoor HDR database
[48]. Our pipeline generates data with sufficient diversity re-
garding the user’s position and orientation, surface and mate-
rials properties, and lighting characteristics. Hence, delivering
adequate training data for the lighting estimation model.

The usage of HDR panoramas is fundamental to the lighting
estimation process. We use the high-dynamic-range images to
generate a Spherical Harmonics representation of the environ-
ment that captures all the lighting information of the scene. The
ultimate goal of our CNN is to learn the HDR SH representation
from conventional LDR images.

For lighting estimation purposes, it is essential to con-
sider a wide range of light sources with distinctive intensities.
Low-Dynamic-Range (LDR) images are widespread and highly
available, such as photographs captured by consumer cameras
or smartphones. However, LDR photographs can not capture in
the same picture the brightest spot of a lamp and the dark details
of a shadowing area, for example.

For our purpose, we use the Laval indoor HDR dataset [48],
a dataset that consists of a large set of high-resolution in-
door panoramas captured in High-Dynamic-Range (HDR). The
panoramas capture the entire Field Of View (FOV), with an az-
imuthal angle of 360 degrees. There are 2142 panoramas cap-
tured at the resolution of 2048×1024 pixels. The scenes have a
variety of lighting settings ranging from artificial light sources
(ceiling, wall, and table lamps) to natural ones (open window,
glass door).

4.1. Mixed-reality-views
The pipeline to obtain a mixed-reality view from the HDR

panoramas (Figure 4) aims to mimic the behavior of an HMD
camera walking through the panorama environment. To accom-
plish this, we rotate the panorama (Fig. 4a) horizontally and
vertically, simulating the user’s head movements in a XR en-
vironment. We choose a random vertical φ and horizontal θ
angle in the range of [-15,15] and [-180, 180] degrees, respec-
tively. We simulate a camera by a perspective projection of the
environment panorama (Fig. 4b). The projection and camera
settings were tailored to replicate the camera (HTC Vive inte-
grated camera) employed in our tests. To approximate the spa-
tial changes in the camera position, we use a warp operation T
defined by:

T (v, β) =
2vz sin(β) +

√
(−2vz sin(β))2 − 4 ‖v‖ sin(β)2 − 1

2 ‖v‖2
(3)

where v is the point (vx, vy, vz), and β is the angle between
the camera nadir and the center of projection in the image.
This warp operation is based on the warp operation proposed
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Figure 4. Mixed-reality-view processing pipeline. The pipeline takes
an HDR panorama (a) and projects this panorama into an LDR mixed-
reality-view (b) while generating the HDR spherical harmonics lighting (d)
through rotations and a warp operation (c) of the original panorama.

by Gardner et al. [48]. We choose β to correspond to the lowest
vertical point visible in the mixed-reality-view.

A simple gamma-correction process [59] is applied to pro-
jected image (Fig. 4b). The resulting LDR image is a mixed-
reality-view that corresponds to a rectified crop of the original
panorama with a limited field of view that mimics the view in
an XR application.

To obtain the lighting setting of the mixed-reality-view, we
project second-order spherical harmonics functions into the (ro-
tated and warped) HDR panorama (Fig. 4c). The projection
generates nine coefficients, one for each function of the second-
order spherical harmonics. Since we intend to estimate the color
of the lighting environment, we project a set of 9 coefficients for
each color channel, resulting in 27 coefficients. Note that all the
process to obtain the spherical harmonics lighting is performed
in HDR. The 27 SH coefficients are represented by a lighting
map in Figure 4d.

The tuple [LDR mixed-reality-view, HDR SH coefficients] is
the sample of our training dataset. To create our dataset, we
execute the pipeline eight times for each panorama in the Laval
indoor HDR dataset, generating a total of 17152 samples in our
dataset.

5. Results, Experiments and Performance

In this section, we show the results of our method and dis-
cuss the XR applications that are made possible by our lighting
estimation method.

5.1. Lighting Estimation

Figure 5. Training and validation loss for the lighting estimation model.

We split our mixed-reality-view data-set into training, val-
idation, and test sets. We use 70% of the data for training
(12008 samples), 15% for validation (2572 samples), and the
remaining 15% for testing (2572 samples). We ensure for our
split sets that a mixed-reality-view generated from a specific
panorama appears only in a single set; thus, the split produces
disjoint sets. Figure 5 shows the training/validation history of
our model. The hyperparameters we use for training: 64 batch
size, 10−4 learning rate, and Adam optimizer [60] (b1 = 0.9,
b2 = 0.999). For training purposes, we use an NVIDIA DGX-
1 machine, the training process was executed on a P100 GPU,
and took 1 hour and 20 minutes. We trained our model for
100 epochs with an early stopping strategy (stop training after
10 epochs without improvements in the validation loss). We
achieve convergence of the validation loss after 45 epochs with
a mean squared error of 0.002472.

Table 1. Mean squared error for the SH coefficients predicted by our model
in the test dataset. 25%, 50% and 75% correspond to the 1st quartile,
median, and 3rd quartile, respectively.

MSE

mean 7.85 × 10−4

25% 1.28 × 10−5

50% 5.20 × 10−5

75% 3.25 × 10−4

Table 1 shows the test results of our lighting estimation
model. We experimented on images never seen by the neural
network during the training phase. We use a mean squared er-
ror (MSE) metric to measure the quantitative performance of
our model, the SH coefficients are defined in the range [-1, 1].
We obtain the ground truth SH coefficients from the projection
of the HDR panoramas on the SH basis. The MSE is calculated
by comparing ground truth and predicted SH coefficients. Our
model’s best predictions (first quartile of test dataset) have an
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average MSE of 1.28 × 10−5, while our model’s worst predic-
tions have an average MSE of 3.25 × 10−4.

Figure 6. Lighting prediction results. The input for our model (left) is
a limited field-of-view image of the scene. The ground truth lighting is
obtained from an HDR panorama. The prediction is obtained from the SH
coefficients of our model.

Figure 6 shows examples of the prediction and the ground
truth. We represent the SH lighting by irradiance environment
maps [52]; for visualization purposes, we perform a gamma
correction and normalization of the environment maps. The
actual difference in rendering using those SH coefficients may
be less perceptible. Most of the prediction errors are related
to small color differences (such as color saturation) between
ground truth and predicted results.

The results presented in Table 2 and in figures 7 and 10 make
use of The Laval Indoor Spatially Varying HDR Dataset [61].
This dataset consists of 20 scenes with HDR panoramas and
light probes. The ground truth renderings in our figures and
experiments are 3D renderings of a reference object (Stanford
bunny) using the original environment map as light probes (we
do not approximate the environment map by SH projection) to
preserve the lighting information.

The rendering of shadows in the relighting scenes is out of
the scope of environment lighting estimation methods. To ren-
der the relighting Figures 1, 7, and 8; we project the shadows
into a manually placed plane below (and in some cases, be-
hind) the virtual objects. Note that with some geometry infor-
mation, it is possible to use the environment SH to cast real-

time soft shadows [62] for the virtual objects in the scene. Con-
sidering that we do not have any geometry information on the
real scenes, it is impracticable to generate shadow maps di-
rectly. However, some scene registration methods like SLAM
[63] could circumvent this manual tweak in real applications.

Figure 7. Lighting prediction results. The input is a limited field-of-view
image of the scene. Our method prediction and Garon et al. [50] prediction
are SH coefficients of the environment. Gardner et al. [48] prediction is a
coarse environment map of the scene.

Figure 7 qualitatively compares our model with the state-
of-art methods. Our method estimation tends to predict the
lighting with more color consistency, blending the virtual ob-
ject with the environment, while in the other methods, the vir-
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Table 2. Normalized root-mean squared error and Structural similarity
error for the renderings using the predicted environment lighting map in
the scenes of the Laval Indoor Spatially Varying HDR dataset.

Our Garon et al. Gardner et al.

NRMSE 0.12 ± 0.03 0.13 ± 0.03 0.18 ± 0.04
SSIME 0.12 ± 0.05 0.14 ± 0.05 0.15 ± 0.07

tual objects seem artificially placed in the real scenes. Gard-
ner’s method usually predicts a mean color environment (clos-
est to grey/brown color), with an overexposed environment
light. In comparison, Garon’s method seems to produce plau-
sible lights but favoring white light sources. In comparison,
Garon’s method seems to produce plausible lights but favors
white light sources. To quantitatively evaluate and compare
our results against the state-of-art methods, we use two metrics,
the Structural Similarity (SSIM) error and the Normalized Root
Mean-Squared error (NRMSE). To evaluate the color consis-
tency, we convert the RGB images to CIELAB colorspace and
compare the a∗ and b∗ channels of the rendered image using
the SSIM error metric. We choose this approach since SSIM is
more suitable to measure the perceptual changes in the images,
while the chosen (a∗, b∗) channels represent the chromatic com-
ponents of the CIELAB colorspace. Table 2 shows the results of
a test that renders lighting estimation for the scenes in the Laval
Indoor Spatially Varying HDR dataset. It can be seen that our
method produces renderings with a smaller NRMSE and SSIM
error than the state-of-art methods.

5.2. Scenes Relight

A relighting application consists of changing the illumination
of a scene according to a given lighting setting. We test our
lighting estimation model in relighting experiments in which
stock photos gathered on the internet were used as background,
and 3D objects are inserted in the scene. Then, our model’s
lighting estimation is used to relights the virtual objects and
produces the relighted scene.

We experiment on indoor scenes, where the majority of XR
applications happen. As shown in Figure 1, our model is ca-
pable of producing plausible lighting for pictures from differ-
ent sources and lighting settings; this is a fundamental factor
since XR applications can significantly differ in respect to the
user’s environment and device characteristics (camera resolu-
tion, field-of-view, lenses distortion).

To further demonstrate the generality of our model, we ex-
perimented on outdoor scenes (Figure 8). Outdoor lighting is
characterized by high-frequency shadows with a high dynamic
range of luminance, dominated by a distant and directional light
source (sunlight). For these reasons, it is a challenge to develop
a lighting estimation method that works in both outdoor and
indoor scenes. Although only indoor images were used in the
CNN training, our model estimates the lighting and produces
plausible relighting of outdoor scenes. However, some chal-
lenging aspects of the outdoor lighting estimation are still are
visible in our results.

Figure 8. Relighting of an outdoor scene. Virtual objects are inserted in
outdoor stock photos. The virtual objects were relighted with our lighting
estimation method.

We experiment with three outdoor scenarios: an overcast
scene, an outdoor scene with a partially visible sky, and a scene
with an entire visible sky. In the first row of Figure 8, our model
made a reasonable ambient lighting estimation for this overcast
scene. Despite being hard to judge the overall lighting direc-
tion in this scene, the intensity of the lighting setting seems
plausible. In the middle row of Figure 8, the lighting estima-
tion intensity seems to be a little bit faded and not prominent
as the natural sunlight intensity. In the last row of Figure 8, the
contribution of the sunlight affects the van and the traffic cones
differently. This discrepancy is probably caused by the lack of
distant illuminants in the indoor scenes that we trained our net-
work. Furthermore, because the sky presents bright spots with
intensities similar to the sun, the model can interpret them as
light sources, with an equivalent contribution to the scene light-
ing. To mitigate those limitations, we plan to further investi-
gate outdoor estimation by including HDR outdoor panoramas
in our training pipeline and extending our neural network model
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by estimating parametric sky models, as described in the con-
clusion section of this paper.

5.3. Spatially-varying lighting

Figure 9. Global and spatially-varying lighting estimation: using a single
image, our method produces a global lighting (a) representing the whole
scene. Using a local image for each object (b), our method produces a
lighting estimation for each virtual object, resulting in spatially-varying
lighting for the scene.

Our method is capable of estimating lighting for indoor and
outdoor scenes. However, since the prediction considers the
whole scene lighting in a single compact representation, local-
ized lights and occlusion in lighting areas pose a challenging
environment for our estimation model. For example, Figure 9a
shows the undesired result when using a single image to esti-
mate the lighting of the entire scene; all 3D virtual objects scat-
tered in the scene are rendered using the same global lighting
estimation.

We present a spatially-varying lighting estimation approach
using our estimation model that circumvents this undesirable
global lighting situation, as shown in Figure 9b. Instead of
estimating the lighting of the entire scene, we provide to our
lighting estimation model only the localized portion of the
scene where the 3D object resides. By using this strategy, our
method produces consistent spatially-varying lighting estima-
tion through the entire scene. Figure 10 shows a qualitative

Figure 10. Qualitative comparison of state-of-art spatially-varying light-
ing estimations methods. The virtual bunny is rendered by: ground truth
lighting, Our method’s estimation, Garon et al.[61] estimation, and Gard-
ner et al. [48] estimation.

comparison between our model and the state-of-art methods.
Our method tends to produce consistent lighting estimations
similar to ground truth while maintaining color consistency and
convincing light brightness.

5.4. Performance

We implemented an application using Unity Engine for ren-
dering and simulation. The application runs on a desktop com-
puter with an AMD Ryzen 7 2700X CPU clocked at 3.9 GHz
and 32 GB of RAM and a consumer-grade NVIDIA Geforce
2070 Super GPU. The model inference was implemented using
the PyTorch library without any runtime-specific optimization.
The performance tests are measured over 1000 inferences of
random images scaled to the baseline image resolution of our
model (256 × 192 pixels).

As a result, the average inference time for a single image on
CPU is 30.7 milliseconds, while on an NVIDIA Geforce 2070
Super GPU, the model achieves an inference time of 4.4 ± 0.5
milliseconds (an average rendering time of 227 frames-per-
second), thus satisfying the time budget demanded by XR ap-
plications.

We also test how the model performs when providing more
than one frame for inference; this use-case is of interest for non-
real-time applications, such as offline video processing. For a
batch size of 128 frames, the inference takes 45.9 ± 7.3 ms,
resulting in an average rendering time of 0.36 ms per frame.
Compared to single-frame inference (batch-size = 1), this dif-
ference in inference time is expected since CNN’s are highly
optimized for batched operations.
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Figure 11. Inference Time. Measured inference time for input image for
various resolutions.

Our lighting estimation architecture accepts any image with
resolutions higher than 16x16 pixels, meaning that it produces
an estimation independent of the input image resolution. How-
ever, for optimal estimation results, the input image should be
at the exact resolution as the resolution of the samples in the
dataset during the CNN’s training.

We tested how our model scales concerning the image resolu-
tion and inference time. The Figure 11 shows the inference time
for the baseline resolution of 256 x 192 px. with 4.4 ± 0.5 ms,
and other standard resolutions: 1280 x 720 px. with 7.9 ± 0.8
ms; 1920x 1080 px. with 17.2 ± 1.1 ms, and 2160 x 3840 px.
with 63.4 ± 7.7 ms. This result shows that the inference-time
grows exponentially regarding image resolution. This informa-
tion allowed us to choose a training resolution for the samples
in the dataset that achieves good estimates while maintaining
a high inference performance. An additional benefit of this
choice is the reduced training time of our model.

It is important to note that the image resolution for the light-
ing estimation is not necessarily the same as the rendering im-
age; in most applications, the recommended approach of our
method is to feed to the estimation model an image scaled to
the baseline resolution of 256 x 192 pixels.

Our implementation is limited to second-order spherical har-
monics approximations of the environment lighting. One rea-
son for this choice is the diffuse characteristics of the environ-
ment lighting. However, it is straightforward to expand our
method by changing the size of the last fully connected layer
in our neural network to match a higher degree of spherical har-
monics approximation. Rendering time is another consideration
for using a higher degree of spherical harmonics approxima-
tion. Increasing the number of coefficients results in increasing
the samples per pixel in the rendering pipeline.

6. Conclusions

In this work, we introduced a new real-time environment
lighting model that is able to compute plausible estimated en-
vironment lighting for XR applications directly from mixed-
reality-views with no former constraints. Unlike previous ap-

proaches, we neither rely on any constraints on the scene ge-
ometry and lighting settings nor require the use of probes.

The environment lighting produced is encoded as 3×9 spher-
ical harmonic coefficients (9 for each color channel) predicted
by a new deep neural network architecture capable of repre-
senting the spatially-varying environment lighting with only a
single image of the scene.

Our training dataset is defined by a set of mixed-reality-views
and SH environment lighting computed from an indoor HDR
panorama dataset. We produce a new dataset from the origi-
nal one by varying user orientation and camera position with
respect to each panorama. While camera rotation was simu-
lated by rotating the panoramas horizontally and vertically, the
camera spatial variation was obtained by a warping approach.
The final dataset consists of an LDR portion that was computed
by mapping the HDR images using standard gamma correction
and an HDR portion that corresponds to the ground truth SH
lighting projected from the HDR panoramas.

The experiments have shown that we can produce plausi-
ble environment lighting representations without any strong re-
quirements on the inputs. Compared to some state-of-art works,
our work produces a smaller SSIM average error when compar-
ing the predicted environment lighting and the ground truth. We
also show that our method can be easily applied to XR and re-
lighting applications.

The product of our model enables XR applications to change
and adapt the environment lighting, allowing realistic lighting
and immersive simulations. However, some results regarding
scenes with many occluded objects can be enhanced. This is
still a drawback of our method, which can be explained by the
fact that we do not rely on any geometrical information about
the scene. We intend to pursue this in future works. Moreover,
we believe that the impact of the HDR to LDR mapping on
the prediction of the lighting representation must also be more
deeply investigated in the future.

Our method is limited to estimating the diffuse component
of the environment lighting. Thus the estimation of high-
frequency reflection maps is out of the scope of this work. A
future direction of this work will be an inclusion of estimations
regarding additional light representations along with the SH dif-
fuse lighting. In particular, the estimation of real-time reflec-
tion maps for mirror-like surfaces and Spherical Gaussians light
[64] that better describes all-frequency materials such as highly
specular surfaces. Another future extension of our work would
be the addition of parametric estimations tailored for outdoor
scenes. We envision that incorporating an outdoor discrimina-
tor and parametric sky models [65, 66] into the neural network
architecture would make the model robust enough to predict
accurate sun lighting for outdoor scenarios while maintaining
good performance in indoor scenes.
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