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a b s t r a c t 

The recent developments in virtual and mixed reality by the video game and entertainment industries 

are responsible for increasing user’s visual immersion and provide a better user experience in games 

and other interactive simulations. However, the interaction between the user and simulated environment 

still relies on game controllers or other unnatural handheld devices. In the mixed reality context, the 

usage of more natural and immersive alternative to the game controllers, such as the user’s hands, may 

drastically increase the game interface experience, allowing a personalized visual feedback of the user’s 

interactions in the real-time simulation. There are basically two approaches for including the user’s hand: 

a 3D reconstruction based method, typically based on depth cameras, or an image-based approach, com- 

posing the virtual scene with the real images of the user’s hands. In the composition of the user’s hands 

and virtual elements, perceptual discrepancies in the illumination of objects may occur, generating an 

inconsistency in the illumination of the mixed reality environment. A consistent illumination of the en- 

vironment greatly improves the user’s immersion in the mixed reality application. One way to ensure 

consistent illumination is by estimating the real-world illumination and use this information to adapt the 

virtual world lighting setting. We present the Spherical Harmonics Light Probe Estimator, a deep learn- 

ing based technique that estimates the lighting setting of the real-world environment. The method uses 

a single RGB image and does not requires prior knowledge of the scene. The estimator outputs a light 

probe of the real-world lighting, represented by 9 spherical harmonics coefficients. The estimated light 

probe is used to create a composite image containing both real and virtual elements in an environment 

with a consistent illumination. We validate the technique through synthetic tests achieving an RMS error 

of 0.0573. We show the usage of the method in an augmented virtuality application. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Mixed Reality (MR) is the mixture of virtual reality environment

and the real world. Several applications can benefit from mixed re-

ality because of the increased user’s immersion in the simulated

environment. This increased immersion can be achieved due to im-

provements in the realism of the simulated environment and the

creation of a personalized experience. 

The mixed reality spectrum defines a range of environments

between a complete real scene and a totally virtual environment.

This term is defined in the reality-virtuality continuum by Milgram

et al. [1] . In this spectrum, it is possible to define the Augmented

Reality (AR) environment, where most of the environment is com-

posed of objects from the real world. Virtual objects are inserted
∗ Corresponding author. 
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n the real environment, allowing some kind of interaction with

hem. 

At the other end of the mixed reality spectrum, there is the

ugmented Virtuality (AV), where most of the environment is com-

osed of virtual objects. Real objects are inserted in this virtual en-

ironment and can interact with the users and the virtual world.

n additional form of augmented virtuality is the usage of real-

orld information, such as movement sensors, GPS location, and

eather information. 

In the extrema of the reality-virtuality continuum, there are

he real environments consisting exclusively of real objects. In the

ther end of the continuum, there are the virtual environments

onsisting exclusively of virtual objects, being these virtual envi-

onments the essential part of the Virtual Reality (VR) applications.

AR and VR applications usually make use of the user’s informa-

ion, such as the user’s location, movements, and image to bring a

ersonalized experience to the users. The personalized experience

as been explored by the entertainment industry to attract new

sers to video-games (Nintendo Wii®, Microsoft Kinect®) and im-

https://doi.org/10.1016/j.cag.2018.09.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2018.09.003&domain=pdf
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rove the user’s interaction in home cinema. The advances in MR

nd VR technology have a huge potential to increase even more

he personalization of user’s experience by introducing the user as

n active character in the simulation. 

Recent developments in virtual reality technologies are making

ow-cost Head-Mounted Displays (HMDs) available to the public.

he HMDs manufacturers are investing significant technical and

onetary resources to create and distribute immersive content for

ome entertainment, including video games and cinema. The in-

reasing popularity of VR and MR is reflected by the worldwide

evenues for mixed reality and virtual reality market that are ex-

ected to grow from US$5.2 billion in 2016 to more than US$162

illion in 2020 [2] . 

.1. User’s immersion 

Video game and other simulation contents for VR and MR treat

he user as the main character of the retreated history. The usual

epresentation of the user is a virtual character or an animated 3D

odel, typically named as the avatar. 

For VR and MR applications, the avatar is almost exclusively

een from the first-person point of view. Meaning that a camera

s positioned in the eyes of the avatar, and what is seen by the

amera is the representation of what the avatar is observing in the

nvironment. The first-person point of view also means that for

ost of the time, the only visible part of the avatar is the upper

imbs (hands and arms). 

A big improvement in the user’s immersion in MR applications

an be achieved by substitution of a 3D avatar’s reconstruction of

he upper limbs by real images of the user’s body, captured by a

amera positioned at the HMD. This substitution would mean that

he user can see the exact real appearance and movement of his

rms and hands, including skin color, geometry, and lighting con-

itions in the mixed reality simulation, increasing dramatically the

ser’s personalization of the experience. 

This substitution of the avatar’s synthetic upper limbs to the

eal user’s upper limbs is not straightforward. The projection of a

eal-world 2D footage containing the user’s body, captured from a

olor camera, into the mixed reality environment is a possible ap-

roach. The captured footage containing the user’s upper limb is

rojected into the virtual camera plane, being necessary to prepro-

ess the captured footage to remove unwanted objects from the

eal scene environment. 

This approach is capable of accurately representing the user’s

hysical attributes in the virtual environment but fails to merge

he real world and virtual world appearance due to the different

ighting condition. We call this difference in the lighting condition

etween the real and virtual environment as the illumination mis-

atch problem. 

.2. Illumination mismatch 

The illumination mismatch problem can affect the way that the

ser perceives the scene, due to the distinct lighting conditions in

he real objects and the virtual scene. This may cause the user per-

eption to loses the sensation of belonging to the scene, leading

o a decrease in his self-presence sensation. The illumination mis-

atch problem can be solved by adjusting the illumination of the

eal, or virtual, or both environment. 

The illumination of the virtual world is known a priori in the

irtual environments. The information of the light sources position

nd their properties are required to correctly render the virtual en-

ironment. Since every light source is well known, adjusting their

roperties is also straightforward. 

The illumination in the real environment is unknown to the

imulation. There is no readily available information about light-
ng condition such as light source position, direction, intensity or

olor in the real environment. This may be particularly critical in

ases of dynamic changes of the lighting conditions. 

In a typical mixed reality scenario, the knowledge of the user’s

eal environment, including the lighting conditions, needs to be ex-

racted from images captured by an RGB camera. This extraction is

ot straightforward. Likewise, changing the lighting configuration

f a color image with unknown illumination is also a challenging

ask because the image does not provide explicit information about

he geometry of the scene. 

.3. Deep lighting estimation 

One important step to solve the illumination mismatch problem

s to recognize or estimate the lighting condition of the real envi-

onment. Based on this information, it is possible to match the vir-

ual and real environment lighting by changing the lighting setup

f the virtual environment, with an adequate level design project. 

The matching of lighting conditions in both real and virtual

nvironment is beneficial to the mixed reality spectrum on both

nds. On the augmented reality end, virtual objects inserted in the

eal scenario can have a realistic appearance and behave like a real

bject. On the augmented virtuality end, a real object can seam-

essly be inserted in the virtual environment. 

In a practical mixed reality application, the lighting estimation

rocess can’t be onerous for the user. Hence, it should not require

omplicated setup procedures or additional hardware. By the na-

ure of such applications, which implies the user’s movement in

n interactive simulation, the lighting estimation process should be

omputationally fast enough to achieve interactive rate and recog-

ize changes in the illumination. 

The lighting estimation is a pattern recognition task that can be

reated by machine learning algorithms. Among machine learning

pproaches that could tackle this task, deep learning algorithms

3] have been responsible for most of the success on techniques

o classify or recognize patterns in images and videos. 

Artificial Neural Networks (ANN) [4] are specialized algorithms

or pattern recognition. These algorithms are inspired by the phys-

ological structure of the human brain, where a pattern is learned

y a complex connection between cells called neurons. In the com-

utational neural network, data processing cells called artificial

eurons are connected in layers. In the past, ANN algorithms made

se of architectures containing few layers of neurons. 

Advances in processing power, in particular by the development

f Graphics Processing Units (GPUs) and the high availability of

ata have driven the ANN researchers to increase the number of

ayers in the ANN architectures. Deep learning is a concept that de-

nes techniques whose an architecture of artificial neural network

ith multiple hidden layers is used to solve a machine learning

ask. 

Given the nature of the lighting estimation problem as a pattern

ecognition task, we explore the deep learning algorithms to solve

he lighting estimation problem. We developed a strategy to esti-

ates the lighting in the real environment based on a color image.

he key contributions of this paper are: 

• Novelty strategy based on deep learning to estimate lighting

from a raw image. This method is particularly more convenient

than others since it does not require special devices such as

depth cameras, fish eyes lenses or passive probes inserted in

the scene. Furthermore, the method does not require previous

knowledge of the scene’s geometry; 
• A method for lighting estimation that is suitable for indoor and

outdoor environments; 
• Fast inference for interactive environments. While training a

deep learning based model can be computationally intensive,



98 B.A.D. Marques et al. / Computers & Graphics 76 (2018) 96–106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

c  

e  

c  

s  

fl  

a  

p

 

i  

a  

o  

f  

o

 

l  

p  

b  

l  

a  

t  

R  

T

 

p  

r  

i  

m  

a  

r  

t  

s  

u  

m  

i

 

m  

m  

P  

T  

a  

r  

e  

f  

e  

u  

c  

s  

d  

n

 

s  

a  

c  

t  

e  

t  

n  

s  

i

 

a  

t  

t  

e  

a  
during inference a trained model demands only a fixed number

of floating point operations making it feasible to be processed

even on low cost embedded devices; 
• An input/output interface that can be easily integrated with

current popular game engines such as Unreal® Engine and Uni-

ty® software. 

2. Related works 

The lighting estimation problem is not limited to mixed real-

ity applications. The lighting settings of a scene is an important

information for a variety of tasks, including scene editing, video

and cinema post process effects, environment design, and scene re-

construction. Previous authors have been working on lighting esti-

mation techniques for a variety of applications with different con-

straints and available resources. 

2.1. Physical light probes for lighting estimation 

The use of physical objects as lighting probes is a possible ap-

proach to the lighting estimation problem. It is possible to rep-

resent the lighting condition of a scene by the scene’s radiance.

An image-based rendering method introduced by Debevec et al.

[5,6] made use of a physical spherical probe placed directly into

the scene to measure scene radiance. Their method captures high

dynamic images of the lighting probe and uses this information to

render a virtual scene. The process to capture the high dynamic

images of the lighting probe presents in the scene is laborious and

requires a proper setup of the scene. Thus, it is not suitable for

practical usage in mixed reality applications, especially for games. 

Using the same idea of a physical lighting probe, Calian et al.

[7] propose the usage of a specialized 3D printed lighting probe

that is capable of capturing the shading of a scene, consequently,

estimating the lighting condition of the scene. 

A common issue associated with the usage of physical objects

as lighting probes into mixed reality application is the requirement

of the lighting probe to be present and visible in the real scene.

This constraint is not achievable in every mixed reality application.

2.2. Lighting estimation for outdoor scenes 

Some methods were developed specifically for outdoor environ-

ments. LaLonde et al. [8] present a method to estimate the lighting

condition in the outdoor environment by estimating the parame-

ters of a sky lighting model [9,10] . The sky lighting model can’t

be applied to indoor environments thus is not suitable for most

MR applications. The parameters of the sky lighting model are es-

timated by analyzing shading and shadow cues on the 2D image.

The method of Hold et al. [11] also focused on the outdoor envi-

ronment, but used a different approach, where the parameters of

the sky lighting model are inferred by a convolutional neural net-

work. 

2.3. Lighting estimation with known scene geometry 

Another possible approach for lighting estimation is to make

the assumption of a prior knowledge of the scene geometry. A spe-

cialized depth camera (RGB-D camera) can be used to capture the

scene geometry. 

Boom et al. [12] proposed a method to estimate a single point

light source based on the geometry of the scene. An RGB-D cam-

era is used to capture the geometry of the scene. They use an im-

age segmentation to find regions of the image with similar albedo

and this segmentation provides the necessary information of the

object’s material in the scene. The geometry and material infor-

mation allows the reconstruction of the original scene under dif-

ferent lighting configurations. They search for the best position
f the light source by a minimization process between the re-

onstructed scene and the captured image of the real scene. Jiddi

t al. [13] proposed a similar method for lighting estimation that

ould handle multiple light sources in the scene. The multiple light

ources estimation is accomplished by analyzing the specular re-

ections in scene images. Some approaches rely on cameras with

 fish-eye lens to capture the surrounding environment and ap-

roximate the lighting condition of the scene. 

Richter-Trummer et al. [14] proposed a technique to recover the

ncident lighting from a 3D scanned object. The method presented

 series of procedures to recover the diffuse and specular material

f a 3D scanned geometry. They estimate the lighting on the sur-

ace of the scanned object by an inverse-rendering process based

n the object’s geometry and materials. 

Choe and Shim [15] proposed a method to estimate the incident

ight of an object based on an inverse rendering technique. The ap-

roach takes an RGB-D image as input and employs a segmentation

ased estimator to predict the low-frequency and high-frequency

ighting. Their method generates a lightmap of the scene through

n optimization process that estimates the lighting and albedo of

he image based on the depth image and the diffuse region of the

GB image. The runtime for whole estimation process takes 6 min.

hus it’s not suitable for real-time environments. 

Knetch et al. [16] made use of a fish-eye lens camera to ap-

roximate the lighting condition of the scene, their approach also

equires previous knowledge of the scene geometry, thus requir-

ng an RGB-D camera for the environment reconstruction. Their

ethod estimates the lighting using Virtual Point Lights (VPL) and

 combination of differential rendering and instant radiosity to

ender mixed reality scenarios. Pessoa et al. [17] present a method

o dynamically generate and update an environment map of the

cene using a fish-eye lens camera and an appropriate camera set

p to capture High Dynamic Range (HDR) images. The environment

ap is employed in a rendering pipeline to render virtual objects

nto real scenes. 

Mandl et al. [18] present a method to generate a radiance

ap that estimates the lighting configuration in a real scene. The

ethod can use any object present in the scene as a lighting probe.

rior knowledge of the object geometry and texture is required.

his method uses deep learning to estimate the radiance map in

 2D image. They generate train data for the neural networks by

endering the lighting probe with the camera positioned in differ-

nt poses. They train several convolutional neural networks, one

or each camera pose. They use an algorithm to estimate the cam-

ra pose in the scene of the real environment. This information is

sed to select which CNN to use in real time. The method requires

omputationally expensive pre-processing steps, including the 3D

canning of the lighting probe, rendering and generation of the

ataset for the specific lighting probe, and training of the neural

etwork. 

The method proposed by Mandl et al. [18] uses a bounding

phere around the light probe to represent camera poses. They tri-

ngulate the bounding sphere to generate a discretized space of

amera poses. They proposed an interpolation technique to select

he correct pose, this method requires the training of 6 CNN’s for

ach vertex of the bounding sphere. Additionally, a data augmen-

ation procedure called disk sampling was applied to reduce the

umber of CNN required for the lighting estimations. With the disk

ampling, one CNN training was used for each vertex of the bound-

ng sphere. 

The training of a CNN is the most time-consuming procedure in

 deep learning technique. Our proposed method uses one CNN for

he entire lighting estimation providing a clear advantage over the

ime-consuming process of training multiple CNN’s in the Mandl

t al. method. Additionally, Mandl et al. work requires at run-time

 pose estimation process to select which CNN to use; this process
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an negatively impact the performance of the technique on real-

ime environments. Moreover, our method does not require extra

nformation of the scene while Mandl et al. demands a 3D scanned

bject with the respective material. 

Gardner et al. [19] proposed a method to estimate the indoor

llumination from a single Low Dynamic Range (LDR) image. The

ethod uses a convolutional neural network to generate an HDR

nvironment map of the scene. They adopt a three-step process

hat consists in construct and train two logistic regression classi-

ers to identify and annotate the location of light sources in the

DR panoramas. The annotated light sources are used in the train-

ng of a CNN to predicts the light source positions in an LDR im-

ge. The trained CNN is fine-tuned with an HDR panorama dataset

o produce an HDR environment map that represents the lighting

n the scene. The method proposed by Gardner et al. requires an

DR panorama dataset to train the CNN. The construction of this

ataset is time-consuming and requires specialized equipment and

esources, such as panoramic heads, high-quality Digital Single-

ens Reflex (DSLR) cameras, and lenses. The preprocessing of the

nput images that estimate light sources positions depends on the

esult of the logistic regression classifiers. They noted that the al-

orithm has difficulties in finding the exact position of small light

ources and have a high error associated with very large area light

ources. Our method encodes all the light sources in a set of Spher-

cal Harmonics (SH) coefficients. This implies that our method does

ot require the exact location of the light sources in the scene thus

ot requiring preprocessing of the input image prior to the training

tep. 

Marques et al. [20] proposed a method that estimates a point

ight source position in a scene based on a single LDR image. Their

ethod uses a deep learning approach to predict the main light

ource position in the real scene. Although their method accurately

stimates the main light source of the scene when a single light

ource is present, it has limitations in the lighting representation

f complex lighting scenarios. The method assumes that a single

oint light source can represent the lighting of the real environ-

ent. This assumption is unrealistic. In the real environment, the

llumination comes from different light sources placed in distinct

ocations of the scene, each light source contributes to the lighting

f the environment with different intensities. A single light source

osition cannot accurately represent the lighting in realistic sce-

arios. 

The proposed method, called Spherical Harmonics Light Probe

stimator (SHLPE), uses a convolutional neural network that es-

imates the parameters (coefficients) of spherical harmonics basis

unctions that are employed as a light probe of the real scene. The

epresentation of the lighting by a spherical harmonics light probe

llows the lighting to be an arbitrary complex area light, thus over-

oming the main limitation of Marques et al. method. 

We improved on Marques et al. [20] work by changing the rep-

esentation of the lighting. This change leads to a series of benefits

hen compared to the previous method: 

• The lighting is an area light that can represent multiple light

sources of distinct intensities and directions; 
• The training dataset does not require an explicit discretization

in the placement of the light sources. The light sources are

naturally distributed in the scene by spherical harmonics func-

tions; 
• The training dataset can incorporate real captured data (HDR

environment mappings) to generate realistic lighting configura-

tions; 
• The method output is a set of SH coefficients that can be used

directly by the game engine as an environment lighting. In the

previous work, the predicted light position could not be a valid

position for a specific virtual scene (for example, light position
inside an item of furniture, or occluded by walls), thus needing

to be adjusted by the application. 

The previous related works share the constraints that limit the

sage of those methods in mixed reality applications applied to

ames. Those constraints are the usage of obtrusive and not practi-

al lighting probe, prior knowledge of the scene geometry or RGB-

 cameras to reconstruct the scene geometry, special equipment

uch as fish-eye lens camera to capture the environment, and com-

licated prior setup of the real environment such a properly cal-

brated camera placement to capture HDR images of the entire

cene. 

Unlike the previous related methods, the work presented in this

aper does not rely on any special equipment, intrusive physical

robes, or prior knowledge of the scene. We present a lighting esti-

ation method that uses a single RGB image as input. Our method

orks on both indoor and outdoor environment and does not re-

uire any special scene setup. 

The Table 1 summarizes the discussed methods for lighting es-

imation. Our method, listed in the first row, is the only one that

oes not require any special equipment or laborious scene setup

nd is capable of estimate the lighting in both indoor and outdoor

nvironments with multiple light sources in real time. 

. Convolutional neural network 

In our method, the lighting estimation is performed by a Con-

olutional Neural Network (CNN), which is a type of ANN where

he main layers are composed of convolution operations. This type

f ANN is specialized in recovering features of images. We based

ur technique on the Residual Network architecture (ResNet) [21] . 

The neural network is a learning algorithm that works in two

eparated phases, the network’s training, and the inference. The

raining of the neural network is a phase that is executed a single

ime and works in any application scenario. In the training pro-

ess, the training data is fed to the network and weights associated

ith the layers of the neural network architecture are updated to

orrectly predict the provided training answers. 

The inference process consists of a single feedforward operation

f data through the layers of a trained network. The inference is a

omputationally fast process since no weights updates or complex

alculations are necessary. Thus it is possible to execute the infer-

nce process in the run-time of a mixed reality application. 

As the depth of a deep neural network increases, the net-

ork begins to exhibit saturation in the accuracy. This saturation

s rapidly followed by a degradation in the accuracy that leads to

igher training error. This problem is called the degradation prob-

em. 

In deep learning, the degradation problem arises as a con-

equence of the solvers having difficult in approximating iden-

ity mappings from a set of nonlinear layers. The insertion of a

reconditioning residual learning function can help the solver to

eal with the degradation problem. The residual learning frame-

ork [21] introduces residual learning functions that are closer to

dentity mappings. The residual learning functions are modeled by

hortcuts between the layers in the network. 

The identity shortcut connects two different layers and pro-

uces new output feature maps by an element-wise addition op-

ration. There are two or more layers between the shortcut con-

ected layers. The projection shortcut connection is similar to the

dentity shortcut, but an additional linear projection is applied to

atch the dimensions of the connected layers. 

The construction of a CNN that follows the residual learning

ramework can be accomplished by the introduction of residual

locks. A residual block has the following characteristics: 
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Table 1 

Lighting estimation methods comparison. 

Authors Input Output No RGB- D 

required 

No fish-eye 

lens required 

No scene setup 

required 

Indoor 

env. 

Outdoor 

env. 

Our , SHLPE RGB image Spherical harmonics 

lighting coefficients 

Marques et al. [20] RGB image Single point light source 

position 

Gardner et al. [19] RGB Image HDR environment mapping 

LaLonde et al. [8] RGB image Sky lighting model 

parameters 

Hold et al. [11] RGB image Sky lighting model 

parameters 

Calian et al. [7] RGB image containing the 

lighting probe 

Custom PRT Shading 

parameters 

Debevec et al. [5] HDR images of the lighting 

probe 

Radiance map 

Mandl et al. [18] Lighting probe 3D 

geometry and material. 

Scene’s RGB image 

Spherical harmonics 

lighting coefficients 

Richter-Trummer 

et al. [14] 

3D geometry and material 

captured by an RGB-D 

camera 

Radiance transfer function 
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Fig. 1. The basic building block of a Residual Network. The building block has a 

shortcut connection and follows the bottleneck design [20] . 
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• A shortcut connection is made to connect the input of the first

layer in the building block to the output of the last layer in the

building block. The identity shortcut connection is used when

the dimension of the input and output are the same. Other-

wise, the projection shortcut connection is employed to match

the dimensions in the feature maps. The projection shortcut

connection is implemented as 1 × 1 convolution layer with a

stride value of 2; 
• A bottleneck design is used to decrease the required training

time. In the ResNet architecture, this design consists in replac-

ing two 3 × 3 convolution layers by a stack of three layers

following the convention: 1 × 1, 3 × 3, and 1 × 1 con-

volution layers. The 1 x 1 layers are used to create a bottle-

neck by reducing the input and output dimensions in the 3 ×
3 layer. Due to the matching dimensions in the first and last

layers of the building block, the bottleneck design allows an

identity shortcut to be used instead of a projection shortcut.

The identity shortcuts result in smaller model size and conse-

quently lower time complexity. 

Fig. 1 illustrate the basic bottleneck residual building block for

a building block with an input of n feature maps. 

The design of a ResNet CNN consists of stacking the building

blocks following two rules: 

1. Consecutive building blocks that have the same feature map

output size must maintain the same number of filters in the

3 × 3 convolution layer; 
2. The time complexity per layer is preserved by doubling the

number of filters every time that a feature map size is

halved. 

Fig. 2 illustrates a valid design for residual building block stack-

ngs in the ResNet architecture. The element-wise addition and the

ectified Linear unit (ReLu) [22] functions present in the output

nd of the shortcut connection were omitted for a better visual-

zation. In this example, the building block 1 and 2 output feature

aps of the same size (in this example, 256). Therefore, accord-

ng to the first rule, they must have the same number of filters in

he 3 × 3 convolution layer (in this example, 64). The second and
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Fig. 2. Residual network design: stacking residual building blocks. 
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hird building block have different feature map output size, a 1 ×
 convolution layer with a stride of 2 was used to halve the fea-

ure map size. According to the second rule, the number of filters

n the building block 2 layers were doubled (in this example, from

4 to 128 in the 3 × 3 convolution layer). Note that the second

ule is also applied to the 1 × 1 convolution layer responsible for

ownsampling the output of the second building block. We follow

he residual network design to construct a 50 layer ResNet for the

ighting estimation problem. Our implementation of the ResNet ar-

hitecture is discussed in Section 8 . 

. Spherical harmonics lighting 

The spherical harmonics lighting is a technique for calculating

he illumination of an area light source on a 3D object. This tech-

ique is based on spherical harmonics special functions, that is a

asis function capable of representing the lighting over all possible

irections in spherical coordinates. 

Basis functions are pieces of a signal that can be combined to

econstruct an approximation of the original signal. This recon-

truction is based on the sum of pieces, where each piece is com-

osed of a function and a constant scalar. 

Given a signal f ( x ) and a set of basis functions B i ( x ), it is possi-

le to calculate the constants C i that approximate the original sig-

al by integrating the signal by each basis function over the entire

omain of the signal. This process of estimating the contribution of

ach basis function in the original signal is called projection . The

rojection process is shown in Eq. (1) : 

 i = 

∫ 
f (x ) B i (x ) dx. (1)

The context of lighting an 3D environment allows for represent-

ng an arbitrary light configuration as a light function. It is possi-

le to represent this light function by a set of coefficients obtained

rom the project operation on predefined basis functions. 

The estimated reconstruction f ′ ( x ) of the function f ( x ) can be

btained by the sum of the basis functions B i ( x ) scaled by the as-

ociated constant C i . This operation is shown in Eq (2) : 

f ′ (x ) = 

∑ 

i 

B i (x ) C i . (2)

The reconstruction of the light function defined on predefined

asis functions can be used in the rendering process of a 3D scene.

uring the rendering, instead of evaluating the light function, it is

ossible to use only the coefficients that represent the light func-

ion on the predefined basis function. This process can speed up

he rendering process and allows the usage of a complex light

unction in real time. 

A particularly interesting subfamily of basis function is the or-

honormal polynomial basis function. An orthonormal basis is de-

ned by basis functions where the integration of any two of them

esults in 0 or 1: 
 1 

−1 

b ′ m 

(x ) b ′ n (x ) dx = 

{
0 for m � = n 

1 for m = n 

. (3)

The main idea of the orthonormal basis function is that the

ontribution of each basis function does not overlap each other,

imilarly to the Fourier transform that breaks a signal into compo-

ents sine-waves. 

The Spherical Harmonics (SH) functions are a set of polynomial

unctions that define an orthonormal basis across the surface of a

phere [23] . The general spherical harmonics functions are defined

or complex numbers. For lighting purposes, we use only real func-

ions, so we consider only the real spherical harmonics functions

referred here as spherical harmonics functions). 

The spherical harmonics are defined in bands, parametrized

ith the numbers l and m . The positive integer l is the band in-

ex (or degree in the polynomial functions notation), the signed

nteger m is the band order and have values in the range [ −l, l ].

he spherical harmonics functions y m 

l 
of the spherical angular co-

rdinates ( θ , φ) are expressed as the following expression: 

 

m 

l (θ, φ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

√ 

2 K 

m 

l 
cos (mφ) P m 

l 
( cos θ ) for m > 0 , 

√ 

2 K 

m 

l 
sin (−mφ) P −m 

l 
( cos θ ) for m < 0 , 

K 

0 
l 

P 0 
l 
( cos θ ) for m = 0 , 

(4) 

here K is a scaling factor defined by 

 

m 

l = 

√ 

(2 l + 1)(l − | m | )! 

4 π(l + | m | )! 
. (5) 

he term P m 

l 
in Eq. (4) is the associated Legendre polynomial of de-

ree l and order m . The associated Legendre polynomials [23] are

ecursively defined by the recurrence relations in the following

quations: 

(l − m ) P m 

l (x ) = x (2 l − 1) P m 

l−1 (x ) − (l + m − 1) P m 

l−2 (x ) , (6a) 

 

m 

m 

(x ) = (−1) m (2 m − 1)!!(1 − x 2 ) m/ 2 , (6b) 

 

m 

m +1 (x ) = x (2 m + 1) P m 

m 

(x ) , (6c) 

 

0 
0 (x ) = 1 . (6d) 

Eq. (6a) generates a higher degree polynomial based on the pre-

ious two degrees ( l − 1 and l − 2 ) functions. The Eq. (6b) requires

o previous values so is suitable to raise the order m from the

tarting point P 0 
0 
, described in Eq. (6d) . The Eq. (6c) can be used to

ift a degree l based on the value of a previous function P m 

l−1 
. The

rocess of evaluating the Legendre polynomial function P m 

l 
consist

f generating P m 

0 
with the Eq. (6b) starting from Eq. (6d) . Then use

he Eq. (6c) to generate P m 

1 
and then iterate Eq. (6a) to generate

 

m 

l 
. 

The SH functions in Eq. (4) are defined in spherical coordinates,

he relation between spherical and cartesian coordinates can be
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Table 2 

First 3 bands SH functions in cartesian coordinates [24] . 

m = −2 m = −1 m = 0 m = 1 m = 2 

l = 0 
1 

2 

√ 

1 

π

l = 1 
1 

2 

√ 

3 

π
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π
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π
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√ 

15 

π

yx 
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π
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π
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expressed as: 

(x, y, z) = ( sin θ cos φ, sin θ sin φ, cos θ ) . (7)

Table 2 shows the first 3 bands of SH functions converted from

spherical to cartesian coordinates using the described relation, the

term r ensures the normalization of the vector and it is defined as

follows: 

r(x, y, z) = 

√ 

x 2 + y 2 + z 2 . (8)

A light distribution function projected in a 3 bands spherical

harmonics basis results in a set of 9 coefficients c l , m 

, one coef-

ficient for each SH function. We can use those coefficients in the

rendering equation as the diffuse light contributions in a given nor-

mal direction n . 

The light contribution L ( n ) in the irradiance function can be ex-

pressed as: 

L (n ) = 

∑ 

l,m 

c l,m 

y l,m 

(n ) . (9)

For a normal vector in cartesian coordinates, we can use the

spherical harmonics functions y l , m 

( x , y , z ) of the Table 2 . It is con-

venient to precalculate the constant terms of the functions y l , m 

( x ,

y , z ) for usage in the shader step of the rendering process. 

The code for the spherical harmonics evaluation is listed in

Algorithm 1 . The array C contains 9 values resulting from the mul-

tiplication of the constant terms of the functions y l , m 

( x , y , z ) and

the coefficients c l , m 

of the SH light function. 

Algorithm 1 Spherical harmonics evaluation algorithm. 

1: function SHResolve ( normal, C) � C is the premultiplied

coefficients array. 

2: result ← C[0] 

3: r esult ← r esult + C[1] ∗ normal.y 

4: r esult ← r esult + C[2] ∗ normal.z 

5: r esult ← r esult + C[3] ∗ normal.x 

6: squared ← normal ∗ normal � the * operator is the

component-wise product of two vectors. 

7: r esult ← r esult + C[4] ∗ normal.x ∗ normal.y 

8: r esult ← r esult + C[5] ∗ normal.z ∗ normal.y 

9: r esult ← r esult + C[6] ∗ squared.z 

10: r esult ← r esult + C[7] ∗ normal.x ∗ normal.z 

11: r esult ← r esult + C[8] ∗ (squared.x − squared.y ) 

12: return result 

13: end function 

We use the SH to represent the light probe of the real environ-

ment in the SHLPE method. In the Section 7 we apply an SH light-

ing algorithm to render a scene containing a 3D model of human

hands under different lighting settings. 

5. Lighting estimation on mixed reality 

The calculation of a physically accurate light model requires a

huge computational effort and time that is not available in real-

time applications. The lighting configuration of the 3D environ-
ent in an interactive simulation can be expressed by many pos-

ible representations. 

Light source models are used to represent the light setup in

he 3D scene. The light source models are heuristics that simu-

ates how the real light source works. Those heuristics are com-

utationally efficient and extensively used for interactive and real-

ime simulations, where a time constraint is present. The usual tar-

et for the frame rendering time in an interactive simulation such

s games is in the range of 16 to 33 ms [25] . 

A point light source model is a light model that gives an equal

mount of light in all directions, the point light is defined by

he position, color, intensity and an attenuation function of the

ight. The attenuation function is a heuristic function that gives

he intensity of the lighting hitting an object, based on the dis-

ance between the point light source and the object position. Al-

hough point lights being extensively used by games and real-time

endering applications, the area light source model [26] produces

moother shadows and are more suitable for realistic graphics. 

Another way to represent the light setup in a 3D scene is the

sage of image-based lighting techniques [6] . Those techniques

ake use of the information contained in radiance images to cre-

te a light probe image capable of representing the incident illumi-

ation conditions at different points in the space. The light probe

an represent arbitrary complex area light of the environment. 

In this work, we present a deep learning based method for

ighting estimation in mixed reality environments: The Spherical

armonics Light Probe Estimator (SHLPE). Our method estimates a

ight probe of the real scene, the light probe is represented by 9

pherical harmonics coefficients. The method use as input a sin-

le RGB image, provided by a video camera positioned in the HMD

evice. 

The proposed framework consists of acquiring the input image,

rocessing the image to extract the desired information, feed the

rocessed image to a trained artificial neural network, and output

he lighting estimation information for a mixed reality application.

he mixed reality application can use this information to adapt the

irtual environment in real time to match the illumination in both

eal and virtual environments. The method assumes the hypothe-

is that the user’s hands are visible in the input image and that the

ser’s hands contain sufficient information about the lighting envi-

onment. The Flowchart presented in Fig. 3 illustrates the overview

f the mixed reality framework, details of each step of the frame-

ork are discussed in the following sections. 

. Input processing 

The input processing step in the framework consists in seg-

enting the input image to isolate the user’s upper limbs from

ny other objects from the image. Since every frame of the cam-

ra feed should be processed, the segmentation process should be

omputationally efficient and suitable for real-time applications. 

For the segmentation process, we use a threshold based skin

egmentation algorithm. This algorithm makes use of images under

ifferent color spaces to identify the pixels in the image that con-

ain a color intensity characteristic of the human skin. The color
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Game Engine

Hands 
segmenta�on

Image of the real 
environment

Ligh�ng 
Es�mator

Virtual environment 
ligh�ng adjustment

Hands montage

Input image

Camera feed

Hands
visible?

Yes

No

Hands image without
the background

Ligh�ng Se�ngs

Fig. 3. Mixed reality framework overview: the real environment is acquired by a camera feed, the input image is an RGB color image, we check if the hand is visible in 

the image to proceed with the lighting estimation. A preprocessing step is performed to separate the hands from the background of the real environment, the resulting 

segmented image is fed to the lighting estimator and to the hands montage process. The lighting estimator receives the segmented image and outputs the lighting settings 

that describe the real environment lighting. The game engine receives the lighting settings and adjusts the virtual environment to match the real environment. The hands’ 

montage process overlay the segmented image in the virtual world image to produce the mixed reality scenario. 
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Fig. 4. The SH Light Probe Dataset scene setup: the scene is composed of a virtual 

camera, a 3D hand model, and a set of 9 SH coefficients that represents the lighting 

of the scene. 
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paces used in this algorithm are the RGB, HSV and YCbCr color

pace [27] . The threshold values are based on empirical test results

resented in the work of Kolkur et al. [28] . 

To improve the segmentation results, we employ a closing mor-

hological image processing operation on the image to fill small

oles in the segmented skin area of the image. A normalized box

lter blur effect is applied to the image to smooth the edges of

he segmented area. The next step is to find the contours of the

egmented area and flood fill the interior of the segmented area to

btain the final segmented area in the image. 

The training phase of a CNN requires a rich dataset of im-

ges and their corresponding labels. In the Section 7 , we explain

 method to create a synthetic dataset for illumination estimation

f a spherical harmonics’ light probe. The training process of the

NN is described in the Section 8 . 

. SH Light Probe Dataset synthesis 

The SHLPE treats the lighting estimation process as a regression

ask. The regression task estimates continuous values for a set of

utputs. The regression CNN is the core of the SHLPE. The CNN

utputs a set of spherical harmonics coefficients that represent a

ight probe in the real environment. Each coefficient has a value in

he range [ −1, 1]. 

The training process of the CNN requires a dataset containing

he images and the values for the SH light probe coefficients. There

s no public available dataset suitable for the training process of

he CNN in the SHLPE method. For this reason, we decided to cre-

te a complete synthetic dataset (The SHLP Dataset) containing hu-

an hands under different lighting conditions. The lighting condi-

ions are represented by a single SH encoded light probe. 

We authored a 3D human hands model to represent the user

n various situations under the usage of the mixed reality applica-

ion. There are two geometry meshes of human hands to represent

oth male and female characteristics. We also account for user’s

acial variations by creating three different skin materials. The 3D

odel is placed in a game engine to simulate the user’s different

nteractions during the real MR application. We have created an-

mations that simulate the most common interactions performed

y the user in mixed reality games and simulations; those anima-

ions include walk, push, grab, jump and punch actions. The 3D

odel uses a screen-space skin shader that approximates the dif-

use subsurface scattering of human skin [29] . The 3D hand model

s positioned right in front of the virtual camera to simulate the
ser’s placement in a first-person view. The Fig. 4 illustrates the

cene setup. 

Each entry in the SHLP Dataset is composed of the image con-

aining the rendered scene and the 9 SH coefficients used during

he rendering process. We use a second order spherical harmonics

asis to approximate the environment lighting. A light probe com-

osed by a set of 9 SH coefficients are sufficient to approximate

he low frequency, diffuse, lighting condition of a real light probe

30] . This representation allows multiple light sources with distinct

ntensities in the resulting lighting probe. 

To create representations of various lighting conditions, we gen-

rate two SH light probes formed of 9 coefficients each. Then we

ombine all coefficient values in the light probes to create 2 9 po-

ential lighting configurations. The coefficients are generated by

andomly sampling real numbers in the range [ −1, 1]. 

We change the lighting settings in the virtual environment us-

ng the SH coefficients in the rendering pipeline [24] . We use the

nreal TM Engine 4 for 3D rendering the scene. We discard any ren-

ered frame which the hands are not visible by the virtual camera.

amples of the SHLP Dataset are shown in the Fig. 5 . 
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Fig. 5. The SHLP Dataset sample images: resulting sample images of the Dataset. 

Different skin colors and mesh geometry were used to create the dataset. There is a 

label describing the 9 SH coefficients lighting settings associated with each sample 

in the dataset. 

Table 3 

The ResNet 50 network architecture. 

Kernel size Stride Pad Output Rpt 

7 × 7 Convolution 2 3 64 1 

3 × 3 Max Pooling 2 0 

1 × 1 Convolution 1 0 64 

3 × 3 Convolution 1 1 64 3 

1 × 1 Convolution 1 0 256 

1 × 1 Convolution 1 0 128 4 

3 × 3 Convolution 1 1 128 

1 × 1 Convolution 1 0 512 

1 × 1 Convolution 1 0 256 6 

3 × 3 Convolution 1 1 256 

1 × 1 Convolution 1 0 2048 

1 × 1 Convolution 1 0 512 3 

3 × 3 Convolution 1 1 512 

1 × 1 Convolution 1 0 2048 

7 × 7 Avg. Pooling 1 0 2048 1 

Fully Connected Mean squared error (MSE) – – 9 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. SHLP estimator on synthetic input. Left Column: Ground truth image gener- 

ated from the 3D hands and two 3D objects (3D cube and 3D sphere) illuminated 

by a known spherical harmonics coefficients. Center Column: Scene illuminated by 

the SHLPE. Right Column: The difference image of the ground truth and the esti- 

mated result. 
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8. Experiments: convolutional neural network training 

The network adopted has 50 layers, the architecture of the net-

work is shown in Table 3 . The first layer is a 7 × 7 convolu-

tion layer with stride 2, zero padding of 3, and 64 filters. This

layer is followed by a max pooling with a stride 2. The next layers

are created by stacking ResNet building blocks (described in the

Section 3 ). The first building block has a 3 × 3 convolution layer

with 64 filters, the last layer of this building block outputs a fea-

ture map of size 256. We repeat this block 3 times (as shown in

column Rpt of Table 3 ). The next building blocks use 3 × 3 con-

volutions of 128, 256 and 512, respectively. The last portion of the

network is composed of a 7 × 7 average pooling layer and a fully

connected layer with a hyperbolic tangent function activation. 

The training process was executed on top of the Caffe Frame-

work [31] . The 50 layers ResNet convolutional neural network re-

ceives as input images with the size of 455 pixels width and

256 pixels height. The network is trained for 80 epochs, with a

learning rate of 0.0 0 01. The training batch size was defined as 32,

this number was determined by the available GPU memory in our

training system. The standard Stochastic Gradient Descent (SGD)

[32] algorithm was used for the minimization of the loss function. 
The loss function used was the standard mean squared error

MSE), resulting in a linear regression task. The output of the net-

ork is an array of size 9 containing the spherical harmonics coef-

cients of the lighting configuration. 

. Lighting estimation results 

The training, inference, and software prototypes were executed

n a machine with the following specification: Intel TM Core TM i7

790, 3.6GHz CPU, 24 GB of DDR3 RAM memory with two

VIDIA 

TM Geforce TM Titan X, 12GB of GDDR5 memory. 

The training time of the CNN’s for the SHLPE took 40 h. It is

mportant to note that the training phase is a process that must

e executed only once. In the run-time, only the inference phase

s executed. The inference time in the CPU took 0.53 s, in the GPU

he process took 13 ms. The CNN learned approximately 24 million

arameters. The output of the last layer in the CNN is an array of 9

H coefficients. The RMS error of the trained networks was 0.0573

gainst the test images. 

Fig. 6 shows the resulting image of the SHLPE lighting estima-

ion in a scene containing the 3D human hands and two objects. To

enerate each sample, a randomly selected pose of the 3D hands

ere selected and placed in the virtual environment. we generate

 random spherical harmonics light probe and render the scene

o obtains the ground truth image. The image containing only the

D human hands are fed to the SHLP estimator, the output coef-

cients are used to generate the resulting image of the predicted

ight probe. To illustrate the error in the estimation process, the

ifference image (right column in Fig. 6 ) is created by subtracting

ixels intensity in the resulting image from the pixels intensity in

he ground truth image, the resulting difference image is converted

o grayscale for better visualization. 

The SHLPE was adopted to generate the images in Fig. 6 . The

se of a random light probe generated from random sampled

pherical harmonics coefficients implies that the values chosen for

he light probe do not match the predefined light probe in the

HLP dataset. The estimator was capable of outputting a classifi-

ation that generates an image with plausible lighting configura-

ion. The first row of images in the Fig. 6 shows lighting estima-

ion that is close to the ground truth (RMSE error: 495.127), while

he second and the third rows of images show the results of the

xperiment with a higher associated error (RMSE error: 975.335,

367.84, respectively). Even in the cases that the estimation dif-

ers from the ground truth, the general appearance of both images

re similar and present a plausible lighting and shading. The Root
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Table 4 

RMSE and NCC statistics for Fig. 6 . 

Row in Fig. 6 RMSE NCC 

1 495.127 0.865148 

2 975.335 0.862725 

3 1367.84 0.859666 

Fig. 7. SHLPE and PLSE [20] lighting estimation on complex lighting scenarios. 

Fig. 8. SHLPE and PLSE lighting estimation comparison. Left Column: Ground truth 

scene illuminated by a known spherical harmonics coefficients. Center Column: 

Scene illuminated by the PLSE [20] method. Scene illuminated by our SHLPE 

method. 
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ean Square Error (RMSE) and the Normalized Cross-Correlation

NCC) for all the images in the Fig. 6 are shown in the Table 4 . 

We compared the estimated prediction of our method with the

oint Light Source (PLS) estimation method [20] . Increasing the

omplexity of the lighting in the scene, by adding additional light

ources, results in larger estimation error as seen in Fig. 7 . Our

ethod outperforms the PLS method, resulting in a more accu-

ate lighting estimation for any number of additional light sources.

n fact, our method estimations are significantly better for light-

ng complex scenes (RMS error of 0.358 vs 0.572 for 10 additional

ight sources). We also made a visual comparison of both methods

s shown in the Fig. 8 . We compare both techniques estimations

o a scene rendered with known illumination. For complex lighting

cenarios, our method estimates more believable lighting settings

han the PLS method, note that our method estimations resemble

he ground truth images while the PLS method produces inaccu-

ate hard shadows and a darker ambient light. 
The visual perception of the correct lighting setting provided by

he SHLPE greatly improves the immersion by correctly blending

he hands and the virtual environment. 

0. Conclusions 

We applied the residual network framework to build a CNN for

he proposed SHLPE method. We made use of basis function, in

articular, the spherical harmonics basis functions to represent a

ight function in the real world. The SH functions were used to

epresent the light probe in the SHLPE method. 

We developed a method for lighting estimation in mixed real-

ty applications. The SHLPE method is capable of estimate the light

robe that represents the lighting of a real environment. We have

hown how the proposed lighting estimation methods could be

sed in a framework for mixed reality applications and how they

an improve the user immersion by mitigating the lighting mis-

atch problem. 

In the Section 9 , the experimental results of the usage of the

HLPE method were presented. The results include the perfor-

ance time, qualitative visual images, and estimation’s error com-

arisons where we demonstrated that the method efficiently es-

imates the lighting in mixed reality applications. We also show

hat the SHLPE method outperforms the previous related state of

he art method for lighting estimation producing more convincing

ighting settings under complex lighting scenarios. 

The key results and contributions of this paper are listed below:

• Novel deep learning based method that estimates the lighting

condition of the real scene in interactive time from a raw image

and does not require any special equipment or prior knowledge

of the scene; 
• A mixed reality framework that incorporates the lighting esti-

mation process to mitigate the lighting mismatch problem in

real time. 

Other contribution of this paper includes: 

• A public dataset for lighting estimations that output an SH en-

coded light probe. 

Future works includes further investigation of temporal issues.

he temporal coherence is a particularly important subject, we

lan to create solutions for the detection of abrupt changes in the

ighting conditions and methods to adapt the virtual environment

o those changes. 
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